Paleocene–Eocene high-grade metamorphism, anatexis, and deformation in the Thor–Odin dome, Monashee complex, southeastern British Columbia

2006 ◽  
Vol 43 (9) ◽  
pp. 1341-1365 ◽  
Author(s):  
Alana M Hinchey ◽  
Sharon D Carr ◽  
Paul D McNeill ◽  
Nicole Rayner

The Thor–Odin dome of the Monashee complex, in the southeastern Canadian Cordillera, comprises Paleoproterozoic basement gneiss with infolds of unconformably overlying rocks of a supracrustal cover sequence and is the deepest exposed structural level in the Omineca belt. Orthogneiss and paragneiss of the basement are migmatitic and contain ubiquitous stromatic leucosome and discrete phenocrystic and pegmatitic vein-type leucosome, which are all interpreted to have formed as a result of in situ melting. The stromatic leucosome is infolded with the country rock (F2), contains a weakly developed foliation, and has a biotite-rich melanosome. The phenocrystic and pegmatitic vein-type leucosome crosscut the stromatic leucosome and the transposition foliation (S2). Evidence to support an igneous and anatectic source for the leucosome includes (i) petrography, (ii) major and trace element chemistry, (iii) zircon morphology, and (iv) peak pressure–temperature (P–T) conditions. Sensitive high-resolution ion microprobe (SHRIMP) 206Pb/238U zircon dates range from ca. 56 to 54 Ma and are interpreted to represent the age of leucosome crystallization. Zircon commonly contains discrete ca. 2.6-1.8 Ga cores that are interpreted as detrital grains inherited from the host paragneiss. Anatexis was ongoing by ca. 56 Ma, as a result of regional prograde metamorphism, and was coincident, at least in part, with the formation of the penetrative S2 transposition foliation and large recumbent F2 tight to isoclinal folds. Anatexis continued during F3 and F4 folding. Melting may have continued until ca. 51 Ma, driven by decompression reactions, and was concomitant with the D5 extensional deformation.

1987 ◽  
Vol 24 (10) ◽  
pp. 2047-2064 ◽  
Author(s):  
Clark E. Isachsen

The Westcoast Crystalline Complex is a belt of plutonic rocks along the west coast of Vancouver Island. It is composed mainly of heterogeneous amphibolitic country rock (Westcoast amphibolite), granitoids of trondhjemitic to gabbroic composition (Westcoast diorite), and variable mixtures of these two components (Westcoast migmatite).Although the protolith of some deformed enclaves may be Paleozoic, most of these rocks were generated in a magmatic-arc setting and intruded in Jurassic time. Major- and trace-element chemistry of the Westcoast Crystalline Complex shows a sub-alkaline tholeiitic to calc-alkaline trend.The exponential cooling curves derived for Westcoast diorites are not consistent with in situ crustal magma genesis but instead indicate that these rocks intruded relatively cool country rock.Based on age and chemistry, the Westcoast Crystalline Complex can be interpreted as the deeper crustal equivalent of the more differentiated Island Intrusions and Bonanza Volcanics. Taken together, these rocks provide a disrupted and perhaps incomplete cross section of the magmatic arc of Vancouver Island.Reconnaissance of the Wark–Colquitz Complex of southern Vancouver Island shows it to be essentially indistinguishable in petrography, chemistry, and age from the Westcoast Crystalline Complex, and a similar history is inferred.A calc-alkaline chemistry and rapid initial cooling also characterize a Catface Intrusion dated at 41 Ma. This is again compatible with arc magmatism, but its proximity to the coeval trench is enigmatic.


2021 ◽  
Vol 83 (5) ◽  
Author(s):  
Tim I. Yilmaz ◽  
Fabian B. Wadsworth ◽  
H. Albert Gilg ◽  
Kai-Uwe Hess ◽  
Jackie E. Kendrick ◽  
...  

AbstractThe nature of sub-volcanic alteration is usually only observable after erosion and exhumation at old inactive volcanoes, via geochemical changes in hydrothermal fluids sampled at the surface, via relatively low-resolution geophysical methods or can be inferred from erupted products. These methods are spatially or temporally removed from the real subsurface and thus provide only indirect information. In contrast, the ICDP deep drilling of the Mt Unzen volcano subsurface affords a snapshot into the in situ interaction between the dacitic dykes that fed dome-forming eruptions and the sub-volcanic hydrothermal system, where the most recent lava dome eruption occurred between 1990 and 1995. Here, we analyse drill core samples from hole USDP-4, constraining their degree and type of alteration. We identify and characterize two clay alteration stages: (1) an unusual argillic alteration infill of fractured or partially dissolved plagioclase and hornblende phenocryst domains with kaolinite and Reichweite 1 illite (70)-smectite and (2) propylitic alteration of amphibole and biotite phenocrysts with the fracture-hosted precipitation of chlorite, sulfide and carbonate minerals. These observations imply that the early clay-forming fluid was acidic and probably had a magmatic component, which is indicated for the fluids related to the second chlorite-carbonate stage by our stable carbon and oxygen isotope data. The porosity in the dyke samples is dominantly fracture-hosted, and fracture-filling mineralization is common, suggesting that the dykes were fractured during magma transport, emplacement and cooling, and that subsequent permeable circulation of hydrothermal fluids led to pore clogging and potential partial sealing of the pore network on a timescale of ~ 9 years from cessation of the last eruption. These observations, in concert with evidence that intermediate, crystal-bearing magmas are susceptible to fracturing during ascent and emplacement, lead us to suggest that arc volcanoes enclosed in highly fractured country rock are susceptible to rapid hydrothermal circulation and alteration, with implications for the development of fluid flow, mineralization, stress regime and volcanic edifice structural stability. We explore these possibilities in the context of alteration at other similar volcanoes.


2002 ◽  
Vol 93 (2) ◽  
pp. 101-110 ◽  
Author(s):  
Peter D. Clift ◽  
Amy E. Draut ◽  
Robyn Hannigan ◽  
Graham Layne ◽  
Jerzy Blusztajn

The Rosroe Formation comprises a series of Lower Ordovician (Llanvirn) conglomerates and sandstones, that lies on the southern limb of the South Mayo Trough, within the Iapetus Suture Zone of western Ireland. Trace element chemistry of granite boulders within the formation indicates a continental, rather than a volcanic arc character that can be correlated to latest Precambrian granites within the Dalradian Metamorphic Block, part of the deformed Laurentian margin. A minority of the clasts may correlate with syn-collisional granites, similar to, but older than, the Oughterard Granite of Connemara. Pb isotope compositions of K-feldspar grains within the sandstones, measured by both ion microprobe and conventional mass spectrometry, show a clear Laurentian affinity, albeit with greater source variability in the sand grains compared to a limited range in the proximal boulders. Palaeo-current indicators demonstrate dominant derivation from the NE, with a significant axial E–W flow. We propose that the Rosroe Formation records unroofing of a rapidly exhuming Dalradian metamorphic belt in North Mayo, following extensional collapse of the Grampian Orogen starting at ˜468 Ma, with minor input from a southerly arc source. The lack of metamorphic input from the S until deposition of the Derryeeny Conglomerate argues that the Connemara terrane was not positioned S of South Mayo Trough through strike-slip faulting until after the end of Rosroe sedimentation (460–443 Ma).


Minerals ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 244 ◽  
Author(s):  
Keyser ◽  
Ciobanu ◽  
Cook ◽  
Feltus ◽  
Johnson ◽  
...  

Zirconium is an element of considerable petrogenetic significance but is rarely found in hematite at concentrations higher than a few parts-per-million (ppm). Coarse-grained hematite ore from the metamorphosed Peculiar Knob iron deposit, South Australia, contains anomalous concentrations of Zr and has been investigated using microanalytical techniques that can bridge the micron- to nanoscales to understand the distribution of Zr in the ore. Hematite displays textures attributable to annealing under conditions of high-grade metamorphism, deformation twins (r~85˚ to hematite elongation), relict magnetite and fields of sub-micron-wide inclusions of baddeleyite as conjugate needles with orientation at ~110˚/70˚. Skeletal and granoblastic zircon, containing only a few ppm U, are both present interstitial to hematite. Using laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) spot analysis and mapping, the concentration of Zr in hematite is determined to be ~260 ppm on average (up to 680 ppm). The Zr content is, however, directly attributable to nm-scale inclusions of baddeleyite pervasively distributed throughout the hematite rather than Zr in solid solution. Distinction between nm-scale inclusions and lattice-bound trace element substitutions cannot be made from LA-ICP-MS data alone and requires nanoscale characterization. Scandium-rich (up to 0.18 wt. % Sc2O3) cores in zircon are documented by microprobe analysis and mapping. Using high-angle annular dark field scanning transmission electron microscopy imaging (HAADF-STEM) and energy-dispersive spectrometry STEM mapping of foils prepared in-situ by focused ion beam methods, we identify [011]baddeleyite epitaxially intergrown with [22.1]hematite. Lattice vectors at 84–86˚ underpinning the epitaxial intergrowth orientation correspond to directions of r-twins but not to the orientation of the needles, which display a ~15˚ misfit. This is attributable to directions of trellis exsolutions in a precursor titanomagnetite. U–Pb dating of zircon gives a 206Pb/238U weighted mean age of 1741 ± 49 Ma (sensitive high-resolution ion microprobe U–Pb method). Based on the findings presented here, detrital titanomagnetite from erosion of mafic rocks is considered the most likely source for Zr, Ti, Cr and Sc. Whether such detrital horizons accumulated in a basin with chemical precipitation of Fe-minerals (banded iron formation) is debatable, but such Fe-rich sediments clearly included detrital horizons. Martitization during the diagenesis-supergene enrichment cycle was followed by high-grade metamorphism during the ~1.73–1.69 Ga Kimban Orogeny during which martite recrystallized as granoblastic hematite. Later interaction with hydrothermal fluids associated with ~1.6 Ga Hiltaba-granitoids led to W, Sn and Sb enrichment in the hematite. By reconstructing the evolution of the massive orebody at Peculiar Knob, we show how application of complimentary advanced microanalytical techniques, in-situ and on the same material but at different scales, provides critical constraints on ore-forming processes.


2010 ◽  
Vol 47 (2) ◽  
pp. 103-120 ◽  
Author(s):  
Georgia Pe-Piper ◽  
David J.W. Piper ◽  
Basilios Tsikouras

The late Neoproterozoic Frog Lake pluton, in the Avalon terrane of the Cobequid Highlands, Nova Scotia, consists predominantly of hornblende gabbro. It shows petrographic similarities to water-rich mafic intrusions known as appinites that are present in some collisional orogens. This study aims to further understanding of the origin of appinitic intrusions. In the field, the main hornblende gabbro was intruded between screens of metasedimentary country rock that is of upper greenschist metamorphic grade. The contacts appear to have been pathways for magma of gabbroic, tonalitic–granodioritic, and granitic composition that carried enclaves of gabbroic lithologies. Some of these magmas had a high volatile content, resulting in abundance of hydrous mineral phases, pegmatites, and diffuse felsic segregations. These varied rocks in the contact zones experienced progressive shear resulting in syn-magmatic deformation. Low-Ti hornblende gabbros have trace-element abundances similar to subduction-related low-K mafic rocks, including some enrichment in large-ion lithophile elements and marked relative depletion in Nb and Y. High-Ti hornblende gabbros and pyroxene–mica gabbro show more alkaline characteristics, with higher amounts of Nb, Y, P2O5, and high-field-strength elements. Tonalite and granite veins are geochemically similar to volcanic-arc granite. Comparison with appinites in the literature suggests that the Frog Lake pluton represents a deeper structural level than most appinites. The Frog Lake appinites were part of the feeder system to back-arc volcanic rocks of the Jeffers Group. Comparison with other appinites also leads to the conclusion that there is not a single type of “appinitic magma”: different appinitic plutons range in composition from low-K calc-alkaline to shoshonitic. The essential characteristic is a water-rich mafic magma. Appinites occur in settings undergoing crustal-scale strike-slip shear, where the faults allow rapid rise of mafic magma to shallow crustal levels.


2018 ◽  
Vol 42 (4) ◽  
pp. 459-479 ◽  
Author(s):  
Maria Rosa Scicchitano ◽  
Daniela Rubatto ◽  
Jörg Hermann ◽  
Tingting Shen ◽  
José Alberto Padrón-Navarta ◽  
...  

2019 ◽  
Vol 512 ◽  
pp. 69-84 ◽  
Author(s):  
Hélène Legros ◽  
Julien Mercadier ◽  
Johan Villeneuve ◽  
Rolf L. Romer ◽  
Etienne Deloule ◽  
...  

2017 ◽  
Vol 54 (7) ◽  
pp. 785-797 ◽  
Author(s):  
Quentin Gall ◽  
William J. Davis ◽  
David G. Lowe ◽  
Quinn Dabros

An occurrence of diagenetic fluorapatite cement is documented within the Cambro-Ordovician Keeseville Formation, Potsdam Group, near Chateaugay in New York State. The fluorapatite cement occurs as stratiform layers within ephemeral fluvial quartz arenites, which have been reworked by aeolian processes prior to burial. The paragenetic sequence includes the following: compaction of dust-rimmed grains → quartz cementation → minor kaolinite → fluorapatite cementation followed by secondary dissolution porosity and telogenetic hematite cementation. Mesogenetic illitization of kaolinite may have taken place prior to or following fluorapatite cementation. The fluorapatite occurs as elongated bladed crystals that characteristically contain ladder-like, inclusion-rich cores running parallel to crystal length, surrounded by clearer rims, and larger blocky crystals towards the middle of interstices. In situ SHRIMP analyses of blocky fluorapatite crystals yield a U–Pb age of 486 ± 29 Ma, indicating that the cement formed during mesogenetic burial processes and (or) during fluid flow driven by Taconic orogenic events. There is no obvious source of phosphorous for the fluorapatite cement within the Potsdam Group, but phosphorous-rich lithologies are known from the adjacent basement of the Adirondack Dome. Phosphorous-rich fluids may have been derived from these basement lithologies. The occurrence of the rare fluorapatite cement in the Keeseville Formation adjacent to the Chateaugay Lake Fault raises the possibility that alkaline phosphatic fluids were focused within the fault and migrated laterally away from the fault into the host Keeseville Formation to form stratiform fluorapatite cement in the sandstone.


Sign in / Sign up

Export Citation Format

Share Document