Internal structure and conditions of permafrost mounds at Umiujaq in Nunavik, Canada, inferred from field investigation and electrical resistivity tomography

2008 ◽  
Vol 45 (3) ◽  
pp. 367-387 ◽  
Author(s):  
Richard Fortier ◽  
Anne-Marie LeBlanc ◽  
Michel Allard ◽  
Sylvie Buteau ◽  
Fabrice Calmels

A systematic approach was used for the interpretation of the electrical resistivity tomography carried out on two permafrost mounds at Umiujaq in Nunavik, Canada, to assess their internal structure and conditions. Prior information under the form of a geocryologic model of the permafrost mounds was integrated in the inversion of the pseudo-section of apparent electrical resistivity. The geocryologic model was developed from the synthesis of previous field investigations, including shallow and deep sampling, temperature and electrical resistivity logging, and cone penetration tests performed in the permafrost mounds. Values of electrical resistivity were ascribed to the different layers making of the geocryologic model to define a synthetic resistivity model of the permafrost mounds used as a reference model to constrain the inversion. The constrained resistivity model clearly show the presence of ice-rich cores in the permafrost mounds underscored by high resistivity values in excess of 30 000 Ωm, while the unfrozen zones surrounding the permafrost mounds are characterized by resistivity values lower than 1000 Ωm. The spatial distribution of unfrozen water and ice contents in the permafrost mounds were also assessed according to empirical relationships between the electrical resistivity and water contents. The ice content is highly variable and can be as high as 80% in the ice-rich cores, while the unfrozen water content varies between 2% and 5%. The integration of prior information in the inversion process leads to a more realistic constrained resistivity model showing sharp resistivity contrasts expected at the boundaries such as the permafrost table and base.

Geophysics ◽  
2006 ◽  
Vol 71 (6) ◽  
pp. B231-B239 ◽  
Author(s):  
Jonathan E. Chambers ◽  
Oliver Kuras ◽  
Philip I. Meldrum ◽  
Richard D. Ogilvy ◽  
Jonathan Hollands

A former dolerite quarry and landfill site was investigated using 2D and 3D electrical resistivity tomography (ERT), with the aims of determining buried quarry geometry, mapping bedrock contamination arising from the landfill, and characterizing site geology. Resistivity data were collected from a network of intersecting survey lines using a Wenner-based array configuration. Inversion of the data was carried out using 2D and 3D regularized least-squares optimization methods with robust (L1-norm) model constraints. For this site, where high resistivity contrasts were present, robust model constraints produced a more accurate recovery of subsurface structures when compared to the use of smooth (L2-norm) constraints. Integrated 3D spatial analysis of the ERT and conventional site investigation data proved in this case a highly effective means of characterizing the landfill and its environs. The 3D resistivity model was successfully used to confirm the position of the landfill boundaries, which appeared as electrically well-defined features that corresponded extremely closely to both historic maps and intrusive site investigation data. A potential zone of leachate migration from the landfill was identified from the electrical models; the location of this zone was consistent with the predicted direction of groundwater flow across the site. Unquarried areas of a dolerite sill were imaged as a resistive sheet-like feature, while the fault zone appeared in the 2D resistivity model as a dipping structure defined by contrasting bedrock resistivities.


2020 ◽  
Vol 25 (2) ◽  
pp. 199-209
Author(s):  
Christopher H. Conaway ◽  
Cordell D. Johnson ◽  
Thomas D. Lorenson ◽  
Merritt Turetsky ◽  
Eugénie Euskirchen ◽  
...  

Surface-based 2D electrical resistivity tomography (ERT) surveys were used to characterize permafrost distribution at wetland sites on the alluvial plain north of the Tanana River, 20 km southwest of Fairbanks, Alaska, in June and September 2014. The sites were part of an ecologically-sensitive research area characterizing biogeochemical response of this region to warming and permafrost thaw, and the site contained landscape features characteristic of interior Alaska, including thermokarst bog, forested permafrost plateau, and a rich fen. The results show how vegetation reflects shallow (0–10 m depth) permafrost distribution. Additionally, we saw shallow (0–3 m depth) low resistivity areas in forested permafrost plateau potentially indicating the presence of increased unfrozen water content as a precursor to ground instability and thaw. Time-lapse study from June to September suggested a depth of seasonal influence extending several meters below the active layer, potentially as a result of changes in unfrozen water content. A comparison of several electrode geometries (dipole-dipole, extended dipole-dipole, Wenner-Schlumberger) showed that for depths of interest to our study (0–10 m) results were similar, but data acquisition time with dipole-dipole was the shortest, making it our preferred geometry. The results show the utility of ERT surveys to characterize permafrost distribution at these sites, and how vegetation reflects shallow permafrost distribution. These results are valuable information for ecologically sensitive areas where ground-truthing can cause excessive disturbance. ERT data can be used to characterize the exact subsurface geometry of permafrost such that over time an understanding of changing permafrost conditions can be made in great detail. Characterizing the depth of thaw and thermal influence from the surface in these areas also provides important information as an indication of the depth to which carbon storage and microbially-mediated carbon processing may be affected.


2021 ◽  
Author(s):  
Asgeir Kydland Lysdahl ◽  
Sara Bazin ◽  
Andreas Olaus Harstad ◽  
Regula Frauenfelder

<div> <p> </p> <p>Design and construction of infrastructure in frozen permafrost soils demands for detailed investigation of the ground characteristics prior to the construction process. Variations in ground temperature affect the physical properties of permafrost, such as amount of unfrozen water content and ice content. In addition, aggradation and degradation of permafrost induce changes of its physical properties. Ground-based Electrical Resistivity Tomography (ERT) and Induced Polarization (IP) surveying can be used to characterize near-surface ground conditions to a few tens of meters depth, especially when calibrated by boreholes. </p> </div><div> <p>Measured electrical resistivity is temperature‐dependent, which makes ERT a suitable tool in permafrost investigations. The temperature dependence is most pronounced for temperatures below freezing point. Electrical resistivity rises exponentially during freezing, when unfrozen water content within a substrate decreases. The electrical resistivity is, thus, very sensitive to phase changes between water and ice and we usually observe a lack of resistivity contrast at lithological interfaces. Direct translation from resistivity to lithology is, therefore, seldomly possible in permafrost. While ERT is successful for mapping the active layer, further interpretation of resistivity profiles is thus impeded by the lack of resistivity contrast within the permafrost. Indeed, the lithological structures are hidden by the strong resistivity of the frozen layer. By adding complementary information, IP measurements can help separate effects due to freezing and lithology. The IP effect can be measured in the time-domain, simultaneously with the ERT measurements, and with the same equipment. The IP effect occurs after abruptly interrupting the current flow between the current electrodes. The voltage across the potential electrodes does not drop to zero instantaneously, but  decays exponentially. The decay time can be used to estimate the chargeability of the ground. </p> </div><div> <p>Here, we present three examples where combined ERT- and IP-surveying was used to detect the interface between sediments and bedrock within permafrost soils, and to investigate potential environmental hazards related to run-off paths from existing and planned landfills. Study sites were an active landfill near the town of Longyearbyen, and two potentially new landfills near Longyearbyen and Barentsburg, respectively (the latter one for surplus masses resulting from coal mining). As permafrost traditionally had been seen as a natural flow barrier for such landfills, understanding its degradation owing to climate change was considered key in the planning of future sites. Eight profiles were carried out in September 2018, when expected active layer thicknesses were at their maxima. Two-dimensional inversion was performed with the commercial software RES2DINV for the resistivity data and Ahrusinv for the chargeability data.  </p> </div><div> <p>The results of our case studies show the benefit of simultaneous ERT- and IP-measurements, to both map active layer depths and determine sediment depths in permafrost areas. They also gave valuable insights in understanding potential environmental hazards related to run-off from the landfill, as a consequence of water entering the landfill in the summer period. ERT/IP surveys are flexible and relatively easy to deploy. The technique is non-destructiv and is, therefore, also suitable for maintenance studies in vulnerable arctic Tundra environments. </p> <p> </p> </div>


2020 ◽  
Author(s):  
Nora Krebs ◽  
Anne Voigtländer ◽  
Matthias Bücker ◽  
Andreas Hördt ◽  
Ruben Schroeckh ◽  
...  

<p>Geophysical methods provide a powerful tool to understand the internal structure of active rock glaciers. We applied Electrical Resistivity Tomography (ERT) to a rock glacier at an elevation of 5500 m a.s.l. in the semi-arid Nyainqêntanglha mountain range on the Tibetan plateau, China.  The investigations comprised three transects across the rock glacier and its catchment, each spanning over a distance of 296 m up to 396 m, equipped with 75 up to 100 electrodes respectively. Our measurements were successful in revealing internal structures of the rock glacier, but were also accompanied by challenges.</p><p>We successfully detected first-order permafrost structures, such as a shallow about 4 m thick active layer of low electrical resistivity values that was underlain by potentially ice rich zones of high resistivity. Further high-resistivity zones were found and interpreted as dense bed rock of adjacent slopes that undergird the loose rock glacier debris.</p><p>Challenges, we faced in the application of ERT, were mainly posed by the morphology and internal structure of the rock glacier itself. Coarse debris created a rough surface that prevented a uniform setup with accurate 4 m spacing. The presence of loosely nested blocks of pebble size up to boulders with large interspaces resulted in high contact resistances. The consequent low injection current densities and possible noisy voltage readings downgraded part of the data, causing low data density and resolution. Coupling was partly improved by attaching salt-watered sponges to the electrodes and adding more conductive fine-grained materials to the electrodes. The detected high resistivity ice layer impeded deep penetration of electrical currents, which caused that the lower limit of the permanently frozen zone could not be defined.</p><p>Despite these challenges, the captured ERT profiles are an indispensable contribution to the sparse field data on the internal structure of rock glaciers on the Tibetan plateau. Our results contribute to a better understanding of the prospective evolution of rock glaciers in dry, high mountain ranges under a changing climate.</p>


Geophysics ◽  
2017 ◽  
Vol 82 (5) ◽  
pp. EN93-EN98 ◽  
Author(s):  
Simon D. Carrière ◽  
Konstantinos Chalikakis ◽  
Charles Danquigny ◽  
Laura Torres-Rondon

We have conducted a comparative study to determine the most efficient and reliable way to calculate the depth of investigation (DOI) index to assess the quality of electrical resistivity tomography models. We compared the results of using resistivity and logarithm of resistivity after testing them on four synthetic models by direct modeling and a field case, in which the resistivity model was validated by auger drillings. We tested the two most commonly used acquisition arrays, dipole-dipole, and Wenner-Schlumberger. The index calculated with the logarithm of resistivity clearly appears to be more satisfactory than the resistivity-based index. The method based on resistivity systematically overestimates risk (high DOI) in areas of high resistivity, and it underestimates risk in conductive zones. As a result, we strongly recommend the use of the logarithm of inverted resistivity to calculate the DOI index.


2021 ◽  
Author(s):  
Julien Gance ◽  
Orlando Leite ◽  
Myriam Lajaunie ◽  
Kusnahadi Susanto ◽  
Catherine Truffert ◽  
...  

<p>Large scale slope instabilities are complex objects controlled by multiple parameters. The underground and superficial structure of the slope plays a major role as it often controls water circulations, potentially causing weathering and damaging processes, and permits the local storage of water masses, causing temporary overload. In addition, the structure of the subsurface often delineates rock-volumes with variable mechanical properties, whose spatial distribution greatly influences the behavior of the slope. This work illustrates how Dense 3D Electrical Resistivity Tomography can provide relevant constraints on these parameters.</p><p>The village of Viella, in France (Hautes-Pyrénées), is affected by strong slope movement since 2018, when a massive rockslide above the village modified the stress conditions of the entire slope and, potentially, the hydrogeological context. As a consequence, some houses and infrastructures are progressively damaged, leading to heavy measures (houses evacuation). This complex, deep-seated (> 80 m), slope instability covers an area of ca. 650 000 m², is primarily composed of altered shists, colluviums, and non-consolidated alluvial deposits, forming several kinematic units with surface velocities in the range [0.5 – 5] mm.month<sup>-1</sup>.</p><p> </p><p>A 3D dense electrical resistivity tomography was realized using the FullWaver system, to characterize the structure and the forcing factors of this unstable slope. 55 V-FullWavers receivers (3 -electrodes, 2 channels sensors) were quasi-evenly distributed over a surface area of 400 x 500 m² with an interval of 90 m, apart from the village area, where no electrode could be grounded. Each V-FullWaver recorded signals through two orthogonal dipoles of 25 m length. Current injections were realized with a high-power transmitter (6 kW, 16 A, 3000 V). 235 injection dipoles were used. The system injected current between a fixed remote electrode (more than 1 km away from the site to increase the investigation depth) and a local mobile electrode, moved all over the investigated area in between the V-Fullwaver receivers, with an interval of approximately 40 m, except in the village area.</p><p> </p><p>The resulting 3D resistivity model presents a high spatial variability until 100 to 150 m depth approximately, that highly relates to the complex strain dynamics of the slope and the hydrogeological observations. It highlights the relation between the most active kinematic compartments and the large-scale structure of the slope.</p><p>It provides a first understanding of the role of local compacted rocks in the buildup of surface deformation but also on the localization of heterogeneities (fissures, scarps) which may relate to water circulation paths.</p><p>. This 3D image of the slope is the first structural reference model for future hydrogeological and geomechanical studies aiming at deducing the possible evolution of the slope.</p>


2020 ◽  
Author(s):  
Laurent Gourdol ◽  
Rémi Clément ◽  
Jérôme Juilleret ◽  
Laurent Pfister ◽  
Christophe Hissler

Abstract. Within the Critical Zone, regolith plays a key role in the fundamental hydrological functions of water collection, storage, mixing and release. Electrical Resistivity Tomography (ERT) is recognized as a remarkable tool for characterizing the geometry and properties of the regolith, overcoming limitations inherent to conventional borehole-based investigations. For exploring shallow layers, a small electrode spacing (ES) will provide a denser set of apparent resistivity measurements of the subsurface. As this option is cumbersome and time-consuming, smaller ES – albeit offering poorer shallow apparent resistivity data – are often preferred for large horizontal ERT surveys. To investigate the negative trade-off between larger ES and reduced accuracy of the inverted ERT images for shallow layers, we use a set of synthetic conductive/resistive/conductive three-layered soil–saprock/saprolite–bedrock models in combination with a reference field dataset. Our results suggest that an increase in ES causes a deterioration of the accuracy of the inverted ERT images in terms of both resistivity distribution and interface delineation and, most importantly, that this degradation increases sharply when the ES exceeds the thickness of the top subsurface layer. This finding, which is obvious for the characterization of shallow layers, is also relevant even when solely aiming for the characterization of deeper layers. We show that an oversized ES leads to overestimations of depth to bedrock and that this overestimation is even more important for subsurface structures with high resistivity contrast. To overcome this limitation, we propose adding interpolated levels of surficial apparent resistivity relying on a limited number of ERT profiles with a smaller ES. We demonstrate that our protocol significantly improves the accuracy of ERT profiles when using large ES, provided that the top layer has a rather constant thickness and resistivity. For the specific case of large-scale ERT surveys the proposed upgrading procedure is cost-effective in comparison to protocols based on small ES.


2021 ◽  
Vol 11 (10) ◽  
pp. 4455
Author(s):  
Alfonso Gutiérrez-Martín ◽  
José I. Yenes ◽  
Marta Fernández-Hernández ◽  
Ricardo Castedo

The paper proposes a novel methodology for the stabilization of shallow foundations, with a simplified model combined with 3D electrical resistivity tomography (ERT-3D and consolidation injections. To determine its usefulness, the method has been applied in a case located in Estepona (southern Spain). The chosen tomography model is the dipole–dipole configuration, with an optimized distance between electrodes of 0.80 m for a better visualization of the foundation subsoil; with this parameterization, a total of 72 electrodes were installed in the analyzed case. In this work, the depth of the anomaly in the building’s supporting subsoil was detected ranging from 2.00 m to 3.90 m deep. The study also delineates areas of high resistivity variations (50–1000 Ω m) in the middle and eastern end of the field. These data have been validated and corroborated with a field campaign. The results of the ERT-3D monitoring are presented, once the investment data has been processed with the RES3DINV software, from the beginning to the end of the stabilization intervention. The novelty occurs with the interaction between the tomography and the foundation consolidation injections, until the final stabilization. This is a very useful methodology in case of emergency consolidation, where there is a need to minimize damage to the building. Thus, people using this combined system will be able to practically solve the initial anomalies of the subsoil that caused the damages, in a non-invasive way, considerably lowering the value of the resistivities.


2016 ◽  
Vol 47 (3) ◽  
pp. 1355
Author(s):  
G. Vargemezis ◽  
N. Diamanti ◽  
I. Fikos ◽  
A. Stampolidis ◽  
Th. Makedon ◽  
...  

Ground penetrating radar (GPR) and electrical resistivity tomography (ERT) surveys have been carried out in the city centre of Thessaloniki (N. Greece), for investigating possible locations of buried building foundations. Geophysical survey has been chosen as a non-destructive investigation method since the area is currently used as a car parking and it is covered by asphalt. The geoelectrical sections derived from ERT data in combination with the GPR profiles provided a broad view of the  subsurface.  Regarding  ERT,  high  resistivity  values  can  be  related  to  buried building remains, while lower resistivity values are more related to the surrounding geological materials. GPR surveying can also indicate man-made structures buried in the ground. Even though the two geophysical methods are affected in different ways by the subsurface conditions, the processed underground images from both techniques revealed great similarity. High resistivity anomalies and distinct GPR signals were observed in certain locations of the area under investigation, which are attributed to buried building foundations as well as the geological structure of the area.


OENO One ◽  
2010 ◽  
Vol 44 (2) ◽  
pp. 51
Author(s):  
Pierre Courjault-Radé ◽  
Muriel Llubes ◽  
José Darrozes ◽  
Marguerite Munoz ◽  
Eric Maire ◽  
...  

<p style="text-align: justify;"><strong>Aims</strong>: The aim of this 2D electrical resistivity tomography (ERT) survey performed on a vineyard plot of the Gaillac appellation was to investigate spatial and temporal variations in subsurface water supply in relation with pedo-geological and morphological features.</p><p style="text-align: justify;"><strong>Methods and results</strong>: The ERT surveys were carried out under two contrasted - dry and humid - climatic conditions. All the resistivity profiles showed the superposition of two layers: a lower layer characterized by very low resistivity values (&lt; 40 <strong>Ω</strong>.m) corresponding to a marly molassic subsoil overlaid by an upper layer characterized by moderate to high resistivity values (300 <strong>Ω</strong>.m to 1500 <strong>Ω</strong>.m) corresponding to a silty-sandy and gravely-pebbly soil sequence. The resistivity values of the molassic subsoil stayed very low independently of water supply conditions whereas those of the soil sequence decreased by a factor 2 (300/750 <strong>Ω</strong>.m versus 750/1500 <strong>Ω</strong>.m) when the plot was close to field capacity.</p><p style="text-align: justify;"><strong>Conclusion</strong>: The ERT results coupled with pedological and morphological data strongly suggest that the water flow is preferentially restricted at the molassic subsoil/soil sequence interface, short-lived and of low amplitude.</p><p style="text-align: justify;"><strong>Significance and impact of the study</strong>: Consequently, the water supply regime, which points out a potential risk of drought stress for vine crops, implies a minimization strategy when choosing vegetal material and viticultural management operations</p>


Sign in / Sign up

Export Citation Format

Share Document