Rb–Sr Geochronology of the Hida metamorphic belt, Japan

1970 ◽  
Vol 7 (6) ◽  
pp. 1383-1401 ◽  
Author(s):  
K. Shibata ◽  
T. Nozawa ◽  
R. K. Wanless

Rb–Sr whole-rock and mineral isochron ages have been determined for metamorphic and granitic rocks of the Hida metamorphic belt. The results indicate that an extensive metamorphic event together with plutonic activity took place within the belt during the latest Paleozoic – early Mesozoic period. The older ages of 220–250 m.y. represent an earlier phase of the metamorphism, whereas the younger ages of 170–180 m.y. represent a later phase. The Funatsu granitic rocks yielded a whole-rock isochron age of 176 m.y. with an initial 87Sr/86Sr ratio of 0.7056. This age is believed to indicate the time of original emplacement, and the rocks are considered to represent late-kinematic intrusion in the Hida belt.Some information on the middle Paleozoic metamorphism in the Hida Mountains was obtained from the isochron study. The whole-rock isochron age of 412 m.y. for the metamorphic rocks of the Fujibashi area may be considered, although not confirmed, to indicate the time of older metamorphism. The Omi Schist of the Circum–Hida crystalline schist belt, which belongs to the glaucophanitic type of metamorphism, gave a mineral isochron age of 350 m.y. thereby providing evidence of mid-Paleozoic metamorphism.The initial 87Sr/88Sr ratios for the whole-rock samples of the Hida metamorphic belt are found to be generally low, i.e. 0.705–0.708. This is especially so for the metamorphic rocks from the northern part of the belt where the lowest values were found.

Author(s):  
Toshiaki Shimura ◽  
Masaaki Owada ◽  
Yasuhito Osanai ◽  
Masayuki Komatsu ◽  
Hiroo Kagami

ABSTRACTThe high-dT/dP-type Hidaka Metamorphic Belt in Hokkaido, northern Japan, represents a tilted crustal section of a magmatic arc of Tertiary age. The highest metamorphic grades reached are granulite facies, and the syn-metamorphic granitic rocks are widely distributed in this metamorphic terrane. The granitic rocks are mainly tonalitic and granodioritic in composition, and are classified into peraluminous (S-type) and metaluminous (I-type) granitoids. A large amount of pyroxene-bearing S-type tonalites (garnet-orthopyroxene tonalite) is distributed in the Niikappu river region in the northern part of the Hidaka Metamorphic Belt. Pyroxene-bearing I-type tonalite (two-pyroxene hornblende tonalite) bodies are also distributed in this area.The pyroxene-bearing tonalites are classified into several sub-types on the basis of their field occurrence, texture, mineral assemblage and geochemical features. Homogeneous IH- and SH-type tonalite are thought to represent original magmas, i.e. those which have been generated by partial melting of mafic metamorphic rocks and pelitic-psammitic metamorphic rocks, respectively. Model calculations assuming batch partial melting indicate that possible restites are garnet-two-pyroxene mafic granulite for IH-type and garnet-orthopyroxene aluminous granulite for SH-type. The unexposed lowermost crust of the ‘Hidaka crust’ is thought to be composed of garnet-two-pyroxene mafic granulite, garnet-orthopyroxene aluminous granulite and metagabbros.


EKSPLORIUM ◽  
2019 ◽  
Vol 40 (1) ◽  
pp. 33
Author(s):  
Ngadenin Ngadenin ◽  
Frederikus Dian Indrastomo ◽  
Widodo Widodo ◽  
Kurnia Setiawan Widana

ABSTRAKElla Ilir secara administratif terletak di Kabupaten Melawi, Kalimantan Barat. Geologi regional daerah Ella Ilir tersusun atas batuan malihan berumur Trias–Karbon yang diterobos oleh batuan granitik berumur Yura dan Kapur. Keterdapatan mineral radioaktif di daerah tersebut terindikasi dari radioaktivitas urat-urat magnetit pada batuan malihan berumur Trias–Karbon dengan kisaran nilai 1.000 c/s hingga 15.000 c/s. Tujuan dari penelitian ini adalah menentukan jenis cebakan mineral bijih dan mengidentifikasi keterdapatan mineral radioaktif pada urat-urat bijih magnetit di daerah Ella Ilir. Metode yang digunakan adalah pemetaan geologi, pengukuran radioaktivitas, analisis kadar uranium, dan analisis mineragrafi beberapa sampel urat bijih magnetit. Litologi daerah penelitian tersusun oleh kuarsit biotit, metatuf, metabatulanau, metapelit, granit biotit, dan riolit. Sesar sinistral barat-timur dan sesar dekstral utara-selatan merupakan struktur sesar yang berkembang di daerah ini. Komposisi mineral urat-urat magnetit terdiri dari mineral-mineral bijih besi, sulfida, dan radioaktif. Mineral bijih besi terdiri dari magnetit, hematit, dan gutit. Mineral sulfida terdiri dari pirit, pirhotit, dan molibdenit sedangkan mineral radioaktif terdiri dari uraninit dan gumit. Keterdapatan urat-urat bijih magnetit dikontrol oleh litologi dan struktur geologi. Urat-urat magnetit pada metabatulanau berukuran tebal (1,5–5 m), mengisi rekahan-rekahan yang terdapat di sekitar zona sesar. Sementara itu, urat-urat magnetit pada metapelit berukuran tipis (milimetrik–sentimetrik), mengisi rekahan-rekahan yang sejajar dengan bidang sekistositas. Cebakan mineral bijih di daerah penelitian adalah cebakan bijih besi atau cebakan bijih magnetit berbentuk urat karena proses hidrotermal magmatik.ABSTRACTElla Ilir administratively located in Melawi Regency, West Kalimantan. Regional geology of Ella Ilir area is composed of metamorphic rocks in Triassic–Carboniferous age which are intruded by Jurassic and Cretaceous granitic rocks. Radioactive minerals occurences in the area are indicated by magnetite veins radioactivities on Triassic to Carboniferous metamorphic rocks whose values range from 1,000 c/s to 15,000 c/s. Goal of the study is to determine the type of ore mineral deposits and to identify the presence of radioactive mineral in magnetite veins in Ella Ilir area. The methods used are geological mapping, radioactivity measurements, analysis on uranium grades, and mineragraphy analysis of severe magnetite veins samples. Lithologies of the study area are composed by biotite quartzite, metatuff, metasilt, metapellite, biotite granite, and ryolite. The east-west sinistral fault and the north-south dextral fault are the developed fault structures in this area. Mineral composition of magnetite veins are consists of iron ore, sulfide, and radioactive minerals. Iron ore mineral consists of magnetite, hematit, and goetite. Sulfide minerals consist of pyrite, pirhotite, and molybdenite, while radioactive minerals consist of uraninite and gummite. The occurences of magnetite veins are controlled by lithology and geological structures. The magnetite veins in metasilt are thick (1.5–5 m), filled the fractures in the fault zone. Meanwhile, the magnetite veins in metapellite are thinner (milimetric–centimetric), filled the fractures that are parallel to the schistocity. The ore deposits in the study area are iron ore deposits or magnetite ore deposits formed by magmatic hydrothermal processes. 


2015 ◽  
Vol 60 (35) ◽  
pp. 3501-3513 ◽  
Author(s):  
LiangChao DA ◽  
Zhen YAN ◽  
Yu HAN ◽  
XiuCai LI ◽  
YuSong WANG ◽  
...  

2011 ◽  
Vol 148 (5-6) ◽  
pp. 1009-1017 ◽  
Author(s):  
ALI FAGHIH ◽  
KHALIL SARKARINEJAD

AbstractThis paper presents quantitative data on the finite strain, quartz crystal fabric, geometry of flow and deformation temperatures in deformed quartzite samples to characterize the ductile deformation along the thrust sheets constituting the Sanandaj–Sirjan Metamorphic Belt within the Zagros Mountains of Iran. The results of this study emphasize the heterogeneous nature of deformation in this belt, showing a spatial variation in strain magnitude and in degree of non-coaxiality. A dominant top-to-the-SE sense of shear is indicated by the asymmetry of microstructures and quartz c-axis fabrics. Quartz c-axis opening angles suggest deformation temperatures range between 435° ± 50°C and 510° ± 50°C, which yield greenschist to amphibolite facies conditions during the ductile deformation. Mean kinematic vorticity number (Wm) measured in the quartzite samples ranges between 0.6 and 0.9 with an average of 0.76, which indicates that extrusion of the metamorphic rocks of the region was facilitated by a significant component of pure shear strain. Traced towards the basal thrust of the Zagros Thrust System from northeast to southwest, the quartz grain fabrics change from asymmetric cross-girdle fabrics in the internal part of the deformation zone to an asymmetric single-girdle fabric at distances close to the basal thrust. This variation may depend on the structural depth and on the geometry of the ductile deformation zone. The observed increase in strain and vorticity within the study area is comparable with patterns recorded within metamorphic rock extrusions within other orogens in the world.


Sign in / Sign up

Export Citation Format

Share Document