Pulse Calibration and its Application to the Daily Calibration of the Canadian Standard Seismograph Network Long Period Seismometers

1974 ◽  
Vol 11 (5) ◽  
pp. 691-697
Author(s):  
A. J. Wickens ◽  
H. S. Hasegawa ◽  
M. N. Bone

The Canadian Seismograph Network long period instrument parameters are used to calculate theoretical output response curves to various input functions. These curves were used as overlays to the actual response of the instruments to a known input pulse sequence. This provides an independent means of determining instrument response as well as daily monitoring ability.

1989 ◽  
Vol 79 (2) ◽  
pp. 493-499
Author(s):  
Stuart A. Sipkin

Abstract The teleseismic long-period waveforms recorded by the Global Digital Seismograph Network from the two largest Superstition Hills earthquakes are inverted using an algorithm based on optimal filter theory. These solutions differ slightly from those published in the Preliminary Determination of Epicenters Monthly Listing because a somewhat different, improved data set was used in the inversions and a time-dependent moment-tensor algorithm was used to investigate the complexity of the main shock. The foreshock (origin time 01:54:14.5, mb 5.7, Ms 6.2) had a scalar moment of 2.3 × 1025 dyne-cm, a depth of 8 km, and a mechanism of strike 217°, dip 79°, rake 4°. The main shock (origin time 13:15:56.4, mb 6.0, Ms 6.6) was a complex event, consisting of at least two subevents, with a combined scalar moment of 1.0 × 1026 dyne-cm, a depth of 10 km, and a mechanism of strike 303°, dip 89°, rake −180°.


1962 ◽  
Vol 52 (4) ◽  
pp. 767-779
Author(s):  
A. F. Espinosa ◽  
G. H. Sutton ◽  
H. J. Miller

abstract A transient technique for seismograph calibration was developed and tested by a variety of methods. In the application of this technique a known transient in the form of an electrical signal is injected, through (a) a Willmore-type calibration bridge or (b) an independent coil, into the seismometer and the corresponding output transient of the system is recorded. The ratio of the Fourier transform of this transient to that of the input pulse yields phase and relative amplitude response of the seismograph as a function of period. Absolute amplitude response may be calculated if two easily determined constants of the seismometer are known. This technique makes practical the daily calibration of continuously-recording seismographs without disturbing the instruments more than a very few minutes. The transient technique was tested and proven satisfactory with results of more conventional steady-state methods, using both digital and analog analyses of the output transients. A variety of output transients corresponding to various theoretical response curves has been calculated for two standard input transients. By comparison of the calculated output transients with experimental results it is possible to obtain the response of the instrument with considerable precision quickly and without computation.


2020 ◽  
Vol 91 (6) ◽  
pp. 3417-3432
Author(s):  
Ashton F. Flinders ◽  
Ingrid A. Johanson ◽  
Phillip B. Dawson ◽  
Kyle R. Anderson ◽  
Matthew M. Haney ◽  
...  

Abstract Throughout the 2018 eruption of Kīlauea volcano (Hawai‘i), episodic collapses of a portion of the volcano’s summit caldera produced repeated Mw 4.9–5.3 earthquakes. Each of these 62 events was characterized by a very-long-period (VLP) seismic signal (>40  s). Although collapses in the later stage of the eruption produced earthquakes with significant amplitude clipping on near-summit broadband seismometers, the first 12 were accurately recorded. For these initial collapse events, we compare average VLP seismograms at six near-summit locations to synthetic seismograms derived from displacements at collocated Global Positioning System stations. We show that the VLP seismic signal was generated by a radially outward and upward ramp function in displacement. We propose that at local distances the period of the VLP seismic signal is solely dependent on the duration of this ramp function and the instrument transfer function, that is, the seismic VLP is an artifact of the bandlimited instrument response and not representative of real ground motion. The displacement ramp function imposes a sinc-function velocity amplitude spectrum that cannot be fully recovered through standard seismic instrument deconvolution. Any near-summit VLP signals in instrument-response-corrected velocity or displacement seismograms from these collapse events are subject to severe band limitation. Similarly, the seismic amplitude response is not flat through the low-frequency corner, for example, instrument-response-uncorrected seismograms scaled by instrument sensitivity are equally prone to band limitation. This observation is crucial when attempting to clarify the different contributions to the VLP source signature. Not accounting for this effect could lead to misunderstanding of the magmatic processes involved.


1973 ◽  
Vol 63 (2) ◽  
pp. 633-646 ◽  
Author(s):  
Donald V. Helmberger

abstract Long-period wave propagation in the upper mantle is investigated by constructing synthetic seismograms for proposed models. A model consisting of spherical layers is assumed. Generalized ray theory and the Cagniard-de Hoop method is used to obtain the transient response. Preliminary calculations on producing the phases P and PP by ray summation out to periods of 50 sec is demonstrated, and synthetic seismograms for the long-period World Wide Standard Seismograph Network (WWSSN) and Long Range Seismic Measurement (LRSM) instruments are constructed. Models containing prominent transition zones as well as smooth models predict a maximum in the P amplitude near 20°. The LRSM synthetics are quite similar for the various models because the instrument is relatively narrow-band, peaked at 20 sec. The upper mantle appears smooth at wavelengths greater than 200 km. On the other hand, the WWSSN synthetics are very exciting for models containing structure. The triplications are apparent and the various pulses contain different periods. The amplitude of the P phase at 30° is down to about 25 per cent of its 20° maximum. The amplitude of the PP phase at 35° is comparable to P. Near 37°, the PP phase grows rapidly reaching about twice the P phase amplitude near 40°. Models containing sharp transition zones produce high-frequency interferences at neighboring ranges. A profile of observations is presented for comparison.


1987 ◽  
Vol 77 (5) ◽  
pp. 1854-1861
Author(s):  
Goetz G. R. Buchbinder

Abstract The instrumental group delay dθ/dω is considered here. First, these delays were calculated for three different recording systems that were used in a precise travel-time monitoring experiment where the delays varied between 10 and 40 msec for the high frequencies of the seismograms involved. A technique is demonstrated by which these delays may be readily accounted for and by which instrumental malfunctions can be readily detected. Second, two of these systems are also currently used for the recording of short-period teleseisms; at the 1-sec period, the group delays are from 0.3 to 0.4 sec, which is significant and must be accounted for. This is particularly important when these systems are used in connection with data from other systems that have different delays, such as the World-Wide Seismograph Station Network and Canadian Seismograph Network stations. Neglecting these delays will create serious problems in seismological tomography and earthquake catalogs. Third, for long-period phases recorded by the SRO-type instruments, the delays for the 10- to 20-sec periods are 6 to 12 sec; again, these are significant and must be accounted for.


2006 ◽  
Vol 18 (4) ◽  
pp. 817-847 ◽  
Author(s):  
W. Govaerts ◽  
B. Sautois

Neurons are often modeled by dynamical systems—parameterized systems of differential equations. A typical behavioral pattern of neurons is periodic spiking; this corresponds to the presence of stable limit cycles in the dynamical systems model. The phase resetting and phase response curves (PRCs) describe the reaction of the spiking neuron to an input pulse at each point of the cycle. We develop a new method for computing these curves as a by-product of the solution of the boundary value problem for the stable limit cycle. The method is mathematically equivalent to the adjoint method, but our implementation is computationally much faster and more robust than any existing method. In fact, it can compute PRCs even where the limit cycle can hardly be found by time integration, for example, because it is close to another stable limit cycle. In addition, we obtain the discretized phase response curve in a form that is ideally suited for most applications. We present several examples and provide the implementation in a freely available Matlab code.


Sign in / Sign up

Export Citation Format

Share Document