Granitic magmas: possible and impossible sources, water contents, and crystallization sequences

1976 ◽  
Vol 13 (8) ◽  
pp. 1007-1019 ◽  
Author(s):  
Peter J. Wyllie ◽  
Wuu-Liang Huang ◽  
Charles R. Stern ◽  
Sven Maaløe

The calc-alkalic rocks of batholiths or their precursors may be generated in deep continental crust, in subducted oceanic crust, in the mantle wedge above, or in processes involving material from all three sources. For the series gabbro–tonalite–granite, we have phase relationships with excess H2O to 35 kbar (3500 MPa), and the H2O-undersaturated liquidus surfaces mapped with contours for H2O contents and with fields for near-liquidus minerals. Isobaric diagrams with low H2O contents provide grids potentially useful in defining limits for the H2O content of magmas, based on the sequence of crystallization. Conclusions from the experimental framework include: (1) The H2O content of large granitic bodies is less than 1.5%. (2) Primary granite magmas can not be derived from the mantle or subducted ocean crust. (3) Primary granite magmas with low H2O content are generated in the crust, and erupted as rhyolites. (4) Primary tonalite and andesite are not generated from mantle peridotite; the H2O contents required are unrealistically high. (5) Primary tonalite and andesite are not generated in the crust unless temperatures are significantly higher than those of regional metamorphism. (6) Subducted ocean crust yields magmas with intermediate SiO2 content, but not primary tonalite and andesite. (7) Batholiths are produced from crustal rocks as a normal consequence of regional metamorphism, with the formation of H2O-undersaturated granite liquid and mobilized migmatites. Some batholiths receive in addition contributions of material and heat from mantle and subducted ocean crust.


2021 ◽  
Vol 32 (5) ◽  
pp. 1212-1225
Author(s):  
Xuan-Ce Wang ◽  
Qiuli Li ◽  
Simon A. Wilde ◽  
Zheng-Xiang Li ◽  
Chaofeng Li ◽  
...  


Experimental petrology can be used in forward and inverse approaches. The forward approach defines the compositions of liquids generated by partial melting of possible source rocks at various depths. The inverse approach determines conditions for multiple-mineral saturation at the liquidus of primitive magmas, correlates them with residual minerals of possible source rocks, and thus provides estimates of depths and temperatures required for their derivation. Review of a selection of forward and inverse results is followed by evaluation of petrological and geophysical processes in layered mantle and in subduction zones. Physical constraints imposed by solidus curves and geotherms present problems for models that derive basalts from deep mantle reservoirs, separated from overlying convecting layers. Magmas from mantle are limited to compositions less siliceous than basaltic andesite, with rare exceptions. Granite liquids cannot be generated from normal peridotite, nor from oceanic crust at mantle pressures in subduction zones. In continental crust, hydrous granite liquid is generated at depths of less than 30 km. Basaltic andesite and picritic basalt are parental magmas for the calc-alkaline series. Andesite is not primary from subcontinental depths, and can be generated as liquid in continental crust only if temperatures exceed about 1100°C. Calc-alkaline magmas may contain components from mantle peridotite, subducted oceanic crust, and continental crust.



2012 ◽  
Vol 4 (2) ◽  
pp. 1379-1410
Author(s):  
S. Bhattacharya ◽  
A. K. Chaudhary ◽  
A. K. Saw ◽  
P. Das ◽  
D. Chatterjee

Abstract. Granulite xenoliths preserve key geochemical and isotopic signatures of their mantle source regions. Mafic granulite and pyroxinite xenoliths within massif-type charnockitic rocks from the Eastern Ghats Belt have recently been reported by us. The mafic granulite xenoliths from the Chilka Lake granulite suite with abundant prograde biotite are geochemically akin to Oceanic Island Basalt (OIB). They can be distinguished from the hornblende-mafic granulite xenoliths with signatures of Arc-derived basalt occurring in the other suites of the Eastern Ghats Belt. These two groups of xenoliths in the Paleoproterozoic Eastern Ghats Province have quite distinct Nd-model ages- 1.9 Ga and 2.5 Ga respectively, which may be interpreted as their crustal residence ages. Strong positive Nb anomalies, indicating subducted oceanic crust in the source, LREE enrichment and strongly fractionated REE pattern are key geochemical signatures attesting to their origin as OIB-type magma. Also low Yb and Sc contents and high (La / Yb)N ratios can be attributed to melting in the presence of residual garnet and hence at great depths (> 80 km). The variable enrichment in radiogenic 87Sr, between 0.70052 and 0.71092 at 1.9 Ga and less radiogenic 143Nd between ε-1.54 and 7.46 are similar to those of the OIBs compared to MORBs. As OIBs commonly contain some recycled oceanic crust in their sources, we suggest that the residue of the oceanic crust from a previous melting event (~ 2.5 Ga) that produced the Arc-derived basalts (protoliths of hornblende-mafic granulite xenoliths) could have subducted to great depths and mechanically mixed with the mantle peridotite. A subsequent re-melting event of this mixed source might have occurred at ca. 1.9 Ga as testified by the crustal residence ages of the biotite-mafic granulite xenoliths of the Chilka Lake granulite suite.



Geochemical data help to constrain the sizes of identifiable reservoirs within the framework of models of layered or whole-mantle circulation, and they identify the sources of the circulating heterogeneities as mainly crustal and/or lithospheric, but they do not decisively distinguish between different types of circulation. The mass balance between crust, depleted mantle and undepleted mantle based on 143 Nd/ 144 Nd, Nb/U and Ce/Pb, and the concentrations of very highly incompatible elements Ba, Rb, Th, U, and K, shows that ca. 25- 70% (by mass) of depleted mantle balances the trace element and isotopic abundances of the continental crust. This mass balance reflects the actual proportions of mantle reservoirs only if there are no additional unidentified reservoirs. Evidence on the nature and ages of different source reservoirs comes from the geochemical fingerprints of basalts extruded at mid-ocean ridges and oceanic islands. Consideration of Nd and He isotopes alone indicates that ocean island basalts (oibs) may be derived from a relatively undepleted portion of the mantle. This has in the past provided a geochemical rationale for a two-layer model consisting of an upper depleted and a lower undepleted (‘primitive’) mantle layer. However, Pb-isotopic ratios, and Nb/U and Ce/Pb concentration ratios demonstrate that most or all oib source reservoirs are definitely not primitive. Models consistent with this evidence postulate recycling of oceanic crust and lithosphere or subcontinental lithosphere. Recycling is a natural consequence of mantle convection. This cannot be said for some other models such as those requiring large-scale vertical metasomatism beneath oib source regions. Unlike other trace elements, Nb, Ta, and Pb discriminate sharply between continental and oceanic crust-forming processes. Because of this, the primitive mantle value of Nb/U = 30 (Ce/Pb = 9) has been fractionated into a continental crustal Nb/U = 12 (Ce/Pb = 4) and a residual-mantle (morb (mid-ocean ridge basalt) plus oib source) Nb/U = 47 (Ce/Pb = 25). These residual mantle values are uniform within about 20% and are not fractionated during formation of oceanic crust. By using these concentrations ratios as tracers, it can be shown that the possible contribution of recycled continental crust to oib sources is limited to a few percent. Therefore, recycling must be dominated by oceanic crust and lithosphere, or by subcontinental lithosphere. Oceanic crust normally bears a thin layer of pelagic sediment at the time of subduction, and this is consistent with oib sources that are dominated by subducted oceanic crust with variable but always small additions of continental material. Primordial 3 He, 36 Ar, and excess 129 Xe, in oceanic basalts demonstrate that the mantle has been neither completely outgassed nor homogenized, but they do not constrain the degree of mixing or the size of reservoirs. Also, helium does not correlate well with other isotopic data and may have migrated into the basalt source from other regions. The high 3 He/ 4 He ratios found in some oibs suggest that, even though the basalts are not derived from primordial mantle, their sources may be located close to a reservoir rich in primordial gases. This leads to models in which the oib sources are in a boundary layer within the mantle. The primordial helium migrates into this layer from below. The interpretation of the rare-gas data is still quite controversial. It is often argued that the upper mantle is a well-homogenized reservoir, but the data indicate heterogeneities on scales ranging from 10° to 10 6 m. The 206 Pb/ 204 Pb ratios in the oceanic m antle range from 17 to 21, which is similar to the range in most continental rocks. The degree of mixing cannot be directly inferred from these data unless the size and composition of the heterogeneities and the time of their introduction into the system are known. The relative uniformity of Nb/U and Ce/Pb ratios in the otherwise heterogeneous morb and oib sources indicates that this reservoir was indeed homogenized after the separation of the continental crust, and that the observed isotopic and chem ical heterogeneities were introduced subsequently. Overall, the results are consistent with, but do not prove, a layered mantle where the upper layer contains both morb and oib sources, and the lower, primitive mantle is not sampled by present-day volcanism. Alternative models such as those involving a chemically graded mantle have not been sufficiently explored.



2001 ◽  
Vol 172 (3) ◽  
pp. 319-332 ◽  
Author(s):  
Gaelle Prouteau ◽  
Rene C. Maury ◽  
Manuel Pubellier ◽  
Joseph Cotten ◽  
Herve Bellon

Abstract Magmatic activity linked to syn- or post-collisional zones leads to the emplacement of remarkably heterogeneous rocks: calc-alkaline, high-K calc-alkaline or shoshonitic series variably contaminated by continental crust; anatectic granites and ignimbrites derived from the latter; and finally alkali potassic to ultrapotassic basalts [Harris et al., 1990; Pearce et al., 1984, 1990; Arnaud et al., 1992; Benito et al., 1999]. The main sources of these magmas are either the upper mantle (sub-oceanic or subcontinental) frequently metasomatized by hydrous fluid originating from the subducted slab; or the continental crust, which can act as a contaminant [Benito et al., 1999; Miller et al., 1999] or melt directly [Harris et al., 1990; Zingg et al., 1990]. The purpose of the present paper is to document the role of a third source: the subducted oceanic crust, as evidenced by the occurrence of Miocene adakites in Sarawak (NW Borneo). The studied rocks have been sampled from western Sarawak (fig. 1), and their location is shown on the geological map [Tan, 1982] of figure 2. They mostly occur as stocks, dykes and sills which crosscut the Paleozoic to Miocene sedimentary units. Two kinds of intrusions can be distinguished. High-K calc-alkaline to medium-K calc-alkaline diorites and microdiorites occur in the northern part of the studied area, in Salak Island and Santubong Peninsula. Microtonalites and dacites occur near Kuching and in the southern part of Sarawak (Kuap and Bau areas). Whole-rock K-Ar data (table I) demonstrate that these two associations are of different ages: high-K calc-alkaline diorites were emplaced during the Lower Miocene (22.3 to 23.7 Ma), whereas the microtonalites and dacites are younger by ca. 8 Ma or more (Middle to Upper Miocene, 14.6 to 6.4 Ma). Major and trace element data (table II) show that the Lower Miocene diorites display all the usual characteristics of subduction-related magmas. The Middle to Upper Miocene microtonalites and dacites share some of these characteristics, but in addition they display typical adakitic features: SiO 2 -rich (65.5-70%) and sodic (Na 2 O/K 2 O>2) character (table II and figure 3); lack or rare occurrence of pyroxenes, usually replaced by early-crystallized (near-liquidus) amphiboles (table III); very low Y and HREE contents, consistent with the presence of residual garnet in their source, and leading to characteristically high La/Yb and Sr/Y ratios (fig. 4, 5). Their titanomagnetite-hemoilmenite associations reflect equilibrium features [Bacon and Hirschman, 1988] indicating moderate temperatures (<900 degrees C) and highly oxidizing (NNO+1) crystallization conditions [Ghiorso and Sack, 1991]. The Lower Miocene Sarawak diorites are typically subduction-related from a geochemical point of view. They likely derive from the evolution of island-arc basaltic magmas, which themselves originated from the partial melting of upper mantle peridotites previously metasomatized by hydrous fluids expelled from the subducting oceanic slab [Tatsumi et al., 1986; Tatsumi, 1989]. The origin of the Middle-Upper Miocene adakitic microtonalites and dacites is different. According to previous studies, they likely derive from the partial melting of metabasalts (garnet amphibolites or eclogites) from subducted oceanic crust [Defant and Drummond, 1990; Defant et al., 1991, 1992; Drummond et al., 1996; Maury et al., 1996; Martin, 1993, 1999]. Their position in the hybrid tonalite+peridotite system [Caroll and Wyllie, 1989] shows that they crystallized within the garnet stability field and likely interacted with the upper mantle during their ascent (fig. 7). This feature is not consistent with their genesis through melting of metabasalts accreted at the base of the Borneo continental crust. In addition, the less evolved Sarawak adakites display mineralogical and geochemical features remarkably similar to those of the 1991 Mt Pinatubo dacite, the experimental petrology of which has been extensively studied at low [2 kbar; Scaillet and Evans, 1999; Rutherford and Devine, 1996] to medium pressures [4 to 20 kbar; Prouteau et al., 1999]. Such dacitic magmas are not in equilibrium with garnet at pressures lower than or equal to 20 kbar, which rules out their derivation from metabasalts tectonically or magmatically accreted to the base of the North Borneo continental crust. We propose, instead, that they originated from the partial melting of basalts from a fragment of oceanic lithosphere within the upper mantle. Like the adakites of Central Mindanao, Philippines [Sajona et al., 1994, 1997 and 2000; Maury et al., 1996] and those from Aird Hills, Papua-New Guinea [Smith et al., 1979; Defant and Drummond, 1990] the Sarawak adakites represent potential markers of the occurrence at depth of oceanic crust slivers, which could be much more common in collision zones than previously thought.



2020 ◽  
Author(s):  
Jana Kotková ◽  
Lukáš Ackerman ◽  
Renata Čopjaková ◽  
Jiří Sláma ◽  
Jakub Trubač ◽  
...  

<p>Orogenic garnet peridotites with associated garnet pyroxenites and eclogites in the (U)HP-(U)HT terranes provide insight into mantle melting and subduction-related metamorphism in collisional orogenic belts. Here we demonstrate that they also represent unique tracers of early subduction processes in the internal part of the European Variscan Belt, where subsequent high-temperature processes affect thermochronometers in crustal rocks. Our study focused on several localities within the Kutná Hora Crystalline Complex (KHCC), a key area for the evolution of the Variscan Bohemian Massif due to its position, evidence for a deep crustal subduction (diamond in granulites) and complete geochronological record.</p><p>The mantle rocks show highly variable petrographical and geochemical characteristics reflecting derivation from contrasting mantle sources which have undergone both mantle melting and enrichment due to subduction-related metasomatism.  While the Úhrov lherzolite has trace element and Sr–Nd–Hf composition similar to depleted oceanic asthenospheric mantle, the composition of the Bečváry lherzolite reflects extensive refertilization by basaltic melts associated with Grt±Cpx precipitation. Multiple solid inclusions (MSI) trapped in garnet, dominated by Ti and Fe-Ti oxides (rutile, ilmenite), represent relics of Ti-rich low-degree basaltic partial melt. Minor hornblende/phlogopite and carbonate reflect mantle metasomatism by H<sub>2</sub>O±CO<sub>2</sub>-bearing fluids. Highly to mildly radiogenic Sr–Nd–Hf–Os isotopic compositions along with negative HFSE anomalies in clinopyroxene indicate only a very small contribution of recycled crustal component. The Doubrava peridotites exhibit marked petrographic variability ranging from harzburgite to composite dunite-wehrlite/olivine-bearing pyroxenite assemblage and contrasting geochemical patterns. This can be best explained by interaction between depleted protolith and SiO<sub>2</sub>-undersaturated melt with small proportion of recycled crust (~5 % when subducted oceanic crust is considered). The KHCC eclogites show diverse origins, involving products of high-pressure crystal accumulation from mantle-derived basaltic melts, or a fragment of MORB-like gabbroic cumulate and crustal-derived material both metamorphosed at HT–HP conditions.</p><p>The Úhrov peridotite yields Lu–Hf age of 395 ± 23 Ma, interpreted as dating garnet growth based on detailed examination of trace element garnet zoning. By contrast, eclogites yield younger Lu–Hf ages of ~350 and 330 Ma, respectively, representing mixed ages as demonstrated by garnet trace element zoning and a strong granulite-facies overprint.</p><p>We propose a refined model for Devonian–Carboniferous evolution of the Bohemian Massif,   with the subduction of the oceanic crust and associated oceanic asthenospheric mantle beneath the Teplá–Barrandian at ~400 Ma related to closure of the Saxothuringian ocean between Gondwana-derived microcontinents. The overlaying lithospheric mantle wedge was refertilized by fluids/melts. Oceanic subduction passed to continental subduction of the Saxothuringian crust (~370–360 Ma?) accompanied by the break-off  of the eclogitized oceanic crust facilitating incorporation of the upwelling asthenospheric mantle into the Moldanubian lithospheric mantle wedge. Subsequent collision and coeval exhumation of mantle and crustal rocks occurred at ~350–330 Ma and might be associated with mixing/mingling of crustal-derived melts and mafic lithologies producing the observed geochemical and geochronological signatures.</p>



2016 ◽  
Author(s):  
Andrew J. Smye ◽  
◽  
Colin R.M. Jackson ◽  
Matthias Konrad-Schmolke ◽  
Stephen Parman ◽  
...  


Author(s):  
Jesse B. Walters ◽  
Alicia M. Cruz-Uribe ◽  
Horst R. Marschall ◽  
Brandon Boucher


Sign in / Sign up

Export Citation Format

Share Document