Problème de la limite Précambrien–Cambrien: étude radiochronologique par la méthode U–Pb sur zircons du volcan du Jbel Boho (Anti-Atlas marocain)

1977 ◽  
Vol 14 (12) ◽  
pp. 2771-2777 ◽  
Author(s):  
J. Ducrot ◽  
J. R. Lancelot

A 534 ± 10 Ma age has been obtained on zircons from Jbel Boho volcano by the U–Pb method; previous assumptions of older ages for the Anti-Atlas Infracambrien (Morocco) cannot be maintained. This formation belongs to the lower Paleozoic. A slight thermal event has affected the volcanic rocks during Variscan (or Hercynian) times and induced opening of the K–Ar and Rb–Sr systems; but the U–Pb system of the zircons has not been affected. These U–Pb data are further reasons to raise the Precambrian – Cambrian boundary to an age of 550–560 Ma.


2002 ◽  
Vol 39 (2) ◽  
pp. 133-143 ◽  
Author(s):  
Maurice Colpron ◽  
James M Logan ◽  
James K Mortensen

A concordant U–Pb zircon age of 569.6 ± 5.3 Ma from synrift volcanic rocks of the Hamill Group, southeastern Canadian Cordillera, provides the first direct U–Pb geochronologic constraint on timing of latest Neoproterozoic rifting along western Laurentia. This age confirms a previous estimate of 575 ± 25 Ma for timing of continental breakup, as derived from the analysis of tectonic subsidence in lower Paleozoic miogeoclinal strata of the North American Cordillera. It also corresponds to the timing of passive margin deposition in the "underlying" Windermere Supergroup of the northern Cordillera, as determined by chemostratigraphic correlations. These timing relationships imply a different breakup history for the northern, as compared to the southern, Cordillera. We propose a model that attempts to explain this paradox of Cordilleran geology. The earlier Neoproterozoic (Windermere-age) rifting event probably records breakup of a continental mass from northern Laurentia followed by development of a passive margin. Accordingly, the Windermere Supergroup of the southern Canadian Cordillera was deposited in an intracontinental rift. The second Neoproterozoic rifting (Hamill–Gog) is interpreted to indicate continental breakup and establishment of a passive margin along western Laurentia.



1974 ◽  
Vol 11 (9) ◽  
pp. 1325-1329 ◽  
Author(s):  
R. F. Cormier

The lower Paleozoic Browns Mountain Group of volcanic and sedimentary rocks underlies much of the Antigonish Highlands on the northern mainland of Nova Scotia. The rocks are apparently unfossiliferous and pre-Lower Silurian in age. Volcanic rocks belonging to the Keppoch Formation give a Rb–Sr whole-rock isochron age of 528 ± 40 m.y.; the indicated value for the initial ratio 87Sr/86Sr is 0.7032 ± 0.0020. The apparent stratigraphic age of the lower part of the Browns Mountain Group then is Cambrian with a middle Cambrian age favored.



1987 ◽  
Vol 24 (2) ◽  
pp. 224-245 ◽  
Author(s):  
H. P. Trettin

In Ellesmere Island, the Canadian Shield and Arctic Platform are flanked on the northwest by the lower Paleozoic Franklinian mobile belt, which comprises an unstable shelf (miogeocline) and a deep-water basin, divisible into an inner sedimentary belt and an outer sedimentary–volcanic belt. Both are tied to the shelf by interlocking facies changes, but additional exotic units may be present in the outer belt.Pearya, bordering the deep-water basin on the northwest, is divisible into four successions. Succession I comprises sedimentary and(?) volcanic rocks, deformed, metamorphosed to amphibolite grade, and intruded by granitic plutons at 1.0–1.1 Ga. Succession II consists mainly of platformal sediments (carbonates, quartzite, mudrock), with smaller proportions of mafic and siliceous volcanics, diamictite, and chert ranging in age from Late Proterozoic (Hadrynian) to latest Cambrian or Early Ordovician. Its concealed contact with succession I is tentatively interpreted as an angular unconformity. Succession III (Lower to Middle Ordovician?) includes arc-type and ocean-floor volcanics, chert, mudrock, and carbonates and is associated with fault slices of Lower Ordovician (Arenig) ultramafic–mafic complexes–possibly dismembered ophiolites. The faulted contact of succession III and the ultramafics with succession II is unconformably overlapped by succession IV, 7–8 km of volcanic and sedimentary rocks ranging in age from late Middle Ordovician (Blackriverian = early Caradoc) to Late Silurian (late Ludlow?). The angular unconformity at the base of succession IV represents the early Middle Ordovician (Llandeilo–Llanvirn) M'Clintock Orogeny, which was accompanied by metamorphism up to amphibolite grade and granitic plutonism. Pearya is related to the Appalachian–Caledonian mobile belt by the Grenville age of its basement, the age of its ultramafic–mafic complexes, and evidence for a Middle Ordovician orogeny, comparable in age and character to the Taconic. By contrast, the Franklinian mobile belt has a Lower Proterozoic (Aphebian) – Archean basement and was not deformed in the Ordovician. Stratigraphic–structural evidence suggests that Pearya was transported by sinistral strike slip as three or more slices and accreted to the Franklinian deep-water basin in the Late Silurian under intense deformation. The inferred sinistral motion is compatible with derivation from the northern Caledonides.



2005 ◽  
Vol 42 (8) ◽  
pp. 1449-1465 ◽  
Author(s):  
Philippe Erdmer ◽  
Mitchell G Mihalynuk ◽  
Hubert Gabrielse ◽  
Larry M Heaman ◽  
Robert A Creaser

A Paleozoic volcanic assemblage exposed in northern British Columbia, near the Turnagain River, previously considered to be part of an accreted terrane, was reported to be in depositional contact with a part of the Cordilleran miogeocline. This paper presents an integrated field, U–Pb geochronology, Sm–Nd isotopic, and geochemical study across the basal contact of the volcanic assemblage. Strongly evolved εNd(T) values, between –13 and –21, from samples of lower Paleozoic sedimentary rocks exposed below the volcanic rocks, and correlated with Atan – Kechika – Road River – Earn strata of the miogeocline farther east, support a North American miogeoclinal affinity, consistent with previously established regional stratigraphic and structural relationships. Nd isotopic data from the volcanic assemblage contrast significantly with data from the sedimentary rocks and record a mantle source (εNd(T) values between +4.0 and +7.0), consistent with a magmatic arc or back arc; negative Nb anomalies are similarly compatible with either arc- or back-arc-related magmatism. A concordant 339.7 ± 0.6 Ma U–Pb zircon date was obtained from the volcanic assemblage. The mixed gradational contact between the miogeoclinal and volcanic rocks is marked by interlayering of finely laminated grey and green phyllites on the scale of centimetres, with no evidence of a tectonic contact. Bedding at the contact is folded into tight outcrop-scale folds that are intruded by an Early Jurassic (187.5 ± 2.9 Ma) granodiorite. On the basis of all available evidence, the contact is interpreted as a facies transition. The Mississippian volcanic assemblage may link the miogeocline with the early development of an Angayucham – Slide Mountain basin.



1977 ◽  
Vol 14 (10) ◽  
pp. 2316-2324 ◽  
Author(s):  
James M. Mattinson

U–Pb measurements on minerals from the Burlington Peninsula indicate that volcanic rocks of the Grand Cove Group and the probably cogenetic Cape Brule porphyry have primary crystallization ages of 475 ± 10 Ma (Early Ordovician). Later intrusive rocks, including the Dunamagon granite, the Burlington granodiorite and the Seal Island Bight syenite were intruded between 445 and 435 Ma ago. The Grand Cove Group and the Cape Brule porphyry completely predate deformation and metamorphism of the eastern division of the Fleur de Lys Supergroup; the Seal Island Bight syenite, Burlington granodiorite, and Dunamagon granite were evidently emplaced during the early stages of this orogeny. The new age results therefore suggest that the orogeny is Taconic in the classic sense. Some of the isotope systems show evidence of a strong thermal event about 340 Ma ago (Early Carboniferous, Acadian). This event may have caused resetting of some of the Rb–Sr isochron ages recently reported for this area.



1995 ◽  
Vol 32 (8) ◽  
pp. 1236-1254 ◽  
Author(s):  
Wayne D. Goodfellow ◽  
Mike P. Cecile ◽  
Matthew I. Leybourne

The Northern Canadian Cordilleran Miogeocline developed intermittently during the early Paleozoic and hosts alkalic and ultrapotassic volcanic rocks that are spatially restricted in thin beds and lenses and isolated volcanic piles. On the basis of geochemistry and geographic location, these volcanic rocks are subdivided into five main groups. Group I rocks (Porter Puddle and Macmillan rocks) are potassic basanites characterized by high Nb, Ce, and Nb/Y and low Zr/Nb. They are chemically similar to the Mountain Diatreme, indicating a genetic link. Group II rocks (Porter Puddle, Niddery, and Macmillan rocks) are also potassic but have lower abundances of Nb and Ce, higher Zr/Nb, and lower Nb/Y. Group III rocks (Vulcan and Itsi Lakes) are also potassic but are chemically variable, have lower contents of high field strength elements (HFSE) than the groups I and II rocks, and contain elevated Ba contents. Groups I–III are characterized by mica (biotite and phlogopite) phenocrysts, sanidine, augite, and Ba-feldspar, a mineral assemblage typical of ultrapotassic lavas. Group IV (Whale Mountain) alkali basalts are the least enriched in the large ion lithophile elements and have relatively low contents of HFSE compared with Groups I and II basalts. Groups I–III are consistent with partial melting of a previously metasomatized lithospheric mantle that was variably enriched in Ba, Nb, and Ce, whereas the group IV rocks are more typical of asthenospherically derived oceanic island basalt partial melts. The geochemistry of the volcanic rocks is consistent with paleotectonic models of the Selwyn Basin. The Selwyn Basin is a passive continental rift that underwent episodic extension and associated subsidence throughout the lower Paleozoic. Alkalic volcanism, and spatially and temporally associated Ba and base metal mineralization, is concentrated along rift-parallel normal faults, particularly where these faults are offset by transform faults.



1995 ◽  
Vol 32 (12) ◽  
pp. 2167-2167 ◽  
Author(s):  
Wayne D. Goodfellow ◽  
Mike P. Cecile ◽  
Matthew I. Leybourne


1996 ◽  
Vol 105 (2) ◽  
pp. 131-141 ◽  
Author(s):  
S S Rathore ◽  
T R Venkatesan ◽  
R K Srivastava
Keyword(s):  


Author(s):  
Gejing Li ◽  
D. R. Peacor ◽  
D. S. Coombs ◽  
Y. Kawachi

Recent advances in transmission electron microscopy (TEM) and analytical electron microscopy (AEM) have led to many new insights into the structural and chemical characteristics of very finegrained, optically homogeneous mineral aggregates in sedimentary and very low-grade metamorphic rocks. Chemical compositions obtained by electron microprobe analysis (EMPA) on such materials have been shown by TEM/AEM to result from beam overlap on contaminant phases on a scale below resolution of EMPA, which in turn can lead to errors in interpretation and determination of formation conditions. Here we present an in-depth analysis of the relation between AEM and EMPA data, which leads also to the definition of new mineral phases, and demonstrate the resolution power of AEM relative to EMPA in investigations of very fine-grained mineral aggregates in sedimentary and very low-grade metamorphic rocks.Celadonite, having end-member composition KMgFe3+Si4O10(OH)2, and with minor substitution of Fe2+ for Mg and Al for Fe3+ on octahedral sites, is a fine-grained mica widespread in volcanic rocks and volcaniclastic sediments which have undergone low-temperature alteration in the oceanic crust and in burial metamorphic sequences.



Sign in / Sign up

Export Citation Format

Share Document