Tectonic evolution of southwestern Newfoundland as indicated by granitoid petrogenesis

1985 ◽  
Vol 22 (7) ◽  
pp. 1080-1092 ◽  
Author(s):  
Derek H. C. Wilton

Four granitoid suites are recognized in the region of the Cape Ray Fault Zone of southwestern Newfoundland. The two oldest (Ordovician–Silurian (?)) suites represent partial melts of their enclosing host rocks. The Port aux Basques granite is modelled as a partial melt of the gneissic component of its host, Port aux Basques Complex. The Cape Ray granite forms a dominantly tonalitic terrane derived by partial melting of ophiolitic material. The Red Rocks granite and a megacrystic phase of the Cape Ray granite form coherent lines of geochemical descent from the parental tonalite but show evidence of some continental crust contamination.The Late Devonian Windowglass Hill granite is a subvolcanic equivalent of felsic volcanic rocks in the Windsor Point Group. Both units were derived as partial melts of continental crust.The post-tectonic, Late Devonian to Early Carboniferous Strawberry and Isle aux Morts Brook granites constitute the youngest granitoid suite in the region. These A-type granitoids were derived as partial melts of an underlying depleted granulitic (felsic) crust. The depleted nature of the source may have resulted from previous generation of the Windowglass Hill granite and Windsor Point Group. The only possible protolith for the granulitic source is Precambrian Grenvillian gneiss. The presence of this gneiss beneath the Cape Ray Fault Zone of southwestern Newfoundland implies that the complete series of lithologies is allochthonous.


2002 ◽  
Vol 39 (8) ◽  
pp. 1219-1237 ◽  
Author(s):  
Greg R Dunning ◽  
Sandra M Barr ◽  
Peter S Giles ◽  
D Colin McGregor ◽  
Georgia Pe-Piper ◽  
...  

Fifteen U–Pb (zircon) radiometric age determinations have been made on igneous rocks of Middle Devonian to Early Carboniferous age from the southern margin of the Magdalen basin in Cape Breton Island and northern mainland Nova Scotia. Volcanic rocks interbed with early rift-basin sedimentary rocks with some palynological biostratigraphy; dated intrusive rocks cut these sedimentary units. Our biostratigraphically constrained ages are in close agreement with the current Devonian time scale. Combined with previously published data, the age determinations show that igneous activity occurred in four pulses: Middle Devonian (390–385 Ma), early Late Devonian (375–370 Ma), latest Devonian to early Tournaisian (365–354 Ma), and late Tournaisian to early Visean (ca. 339 Ma). Middle Devonian (385–389 Ma) volcanic rocks are confined to the Guysborough Group. The Fisset Brook Formation (basalt and minor rhyolite) in the type area and elsewhere in Cape Breton Island and northern mainland Nova Scotia is Late Devonian (ca. 373 Ma), whereas the biostratigraphically distinct succession at Lowland Cove is younger (365 Ma). These Late Devonian rocks are synchronous with plutonism in the Cape Breton Highlands and the Meguma terrane. In the Cobequid Highlands, rhyolite of the Fountain Lake Group was synchronous with Horton Group deposition and with widespread granite plutons (362–358 Ma) emplaced during shear on the Cobequid fault zone. The overlying Diamond Brook Formation basalts are slightly younger (355 Ma). Late Tournaisian – early Visean mafic intrusions and minor basalt occur along the Cobequid – Chedabucto fault zone and in a belt from southern New Brunswick through Prince Edward Island to southwestern Cape Breton Island.



2010 ◽  
Vol 47 (12) ◽  
pp. 1481-1506 ◽  
Author(s):  
Vicki McNicoll ◽  
Gerry Squires ◽  
Andrew Kerr ◽  
Paul Moore

The Duck Pond Cu–Zn–Pb–Ag–Au deposit in Newfoundland is hosted by volcanic rocks of the Cambrian Tally Pond group in the Victoria Lake supergroup. In conjunction with the nearby Boundary deposit, it contains 4.1 million tonnes of ore at 3.3% Cu, 5.7% Zn, 0.9% Pb, 59 g/t Ag, and 0.9 g/t Au. The deposits are hosted by altered felsic flows, tuffs, and volcaniclastic sedimentary rocks, and the sulphide ores formed in part by pervasive replacement of unconsolidated host rocks. U–Pb geochronological studies confirm a long-suspected correlation between the Duck Pond and Boundary deposits, which appear to be structurally displaced portions of a much larger mineralizing system developed at 509 ± 3 Ma. Altered aphyric flows in the immediate footwall of the Duck Pond deposit contained no zircon for dating, but footwall stringer-style and disseminated mineralization affects rocks as old as 514 ± 3 Ma at greater depths below the ore sequence. Unaltered mafic to felsic volcanic rocks that occur structurally above the orebodies were dated at 514 ± 2 Ma, and hypabyssal intrusive rocks that cut these were dated at 512 ± 2 Ma. Some felsic samples contain inherited (xenocrystic) zircons with ages of ca. 563 Ma. In conjunction with Sm–Nd isotopic data, these results suggest that the Tally Pond group was developed upon older continental or thickened arc crust, rather than in the ensimatic (oceanic) setting suggested by previous studies.



2002 ◽  
Vol 39 (5) ◽  
pp. 731-748 ◽  
Author(s):  
G S Sinclair ◽  
S M Barr ◽  
N G Culshaw ◽  
J W.F Ketchum

The Aillik domain of the Makkovik Province is dominated by deformed and metamorphosed sedimentary and bimodal volcanic rocks of the redefined Aillik Group and abundant unfoliated late- to post-orogenic plutonic rocks. Mapping and petrological studies in the Makkovik Bay area of the Aillik domain showed that the upper part of the group, in addition to felsic volcanic rocks, also includes extensive areas of hypabyssal, foliated granitic rocks (Measles Point Granite). Although petrochemically similar to the spatially associated felsic volcanic rocks, a new U–Pb (zircon) age of 1929 Ma suggests that the Measles Point Granite may be about 70 million years older than the volcanic rocks of the Aillik Group, based on published U–Pb dates for the latter unit. The volcanic and granitic rocks show similar structural and metamorphic history, and both have characteristics of crust-derived A-type felsic rocks, although the granite shows less chemical variation than the felsic volcanic rocks. A within-plate setting is postulated, although the associated mafic metavolcanic rocks and amphibolite dykes show evidence of a volcanic-arc influence. Possible solutions of the paradox presented by the U–Pb ages imply that the Measles Point Granite either represents the juvenile basement to the Aillik Group or was derived from a basement with a large juvenile component. The setting for deposition of the Aillik Group that is consistent with current tectonic models for the Makkovik Province is a rifted arc built on a juvenile terrane accreted to Archean crust.



2018 ◽  
Vol 55 (8) ◽  
pp. 905-922 ◽  
Author(s):  
Pierre Bedeaux ◽  
Lucie Mathieu ◽  
Pierre Pilote ◽  
Silvain Rafini ◽  
Réal Daigneault

The Piché Structural Complex (PSC) extends over 150 km within the Cadillac – Larder Lake Fault Zone (CLLFZ), a gold-endowed, east-trending, and high-strain corridor located along the southern edge of the Archean Abitibi Subprovince. The PSC consists of discontinuous units of volcanic rocks (<1 km thick) that host multiple gold deposits. It is spatially associated with molasse-type Timiskaming sedimentary basins. This study describes and interprets the origin of structures and lithologies within the poorly understood PSC to unravel the tectonic evolution of the CLLFZ. Field mapping, chemical analyses, as well as interpretations of cross-sections from drill-hole data, were used to interpret the geometry and structure of the PSC. The PSC is subdivided into six homogeneous fault-bounded segments or slivers. These slivers consist mostly of ultramafic to intermediate volcanic rocks and include some felsic volcanic flows and intrusions. Volcanic facies, chemical compositions, and isotopic ages confirm that these slivers are derived from the early volcanic units of the southern Abitibi greenstone belt, which are located north of the CLLFZ. Cross-cutting relationships between volcanic rocks of the PSC and the Timiskaming-aged intrusions suggest that the slivers were inserted into the CLLFZ during the early stages of the accretion-related deformation (<2686 Ma) and prior to Timiskaming sedimentation and ductile deformation (>2676 Ma). The abundant ultramafic rocks located within the CLLFZ may have focused strain, thereby facilitating the nucleation of the fault as well as the displacements along this crustal-scale structure.



1985 ◽  
Vol 22 (7) ◽  
pp. 1048-1065 ◽  
Author(s):  
R. A. Frith ◽  
B. J. Fryer

The Regan Intrusive Suite of about 100 plutons of tonalite, granodiorite, and quartz diorite intruded the Yellowknife Supergroup and migmatite terrain in the northwest Slave Structural Province 2.59 Ga ago. Rare-earth-element (REE), trace-element, and major-element analyses from 39 representative whole rocks from the suite suggest it was derived by batch melting of the crust, producing a parental magma of tonalitic or granodioritic composition. By analysing REE from different parts of a zoned pluton, it was concluded that REE distribution was controlled by early separation of quartz diorite from the parent magma by flow differentiation and that the bulk of the REE were contained in early, cumulate, accessory apatite and monazite. The residual magma was further fractionated in pipelike magma chambers during ascent into more leucocratic rocks. Chondrite-normalized REE patterns of single-lithology plutons are similar to lithologies in zoned plutons, and it is proposed they initially segregated during ascent. It was found that granites, which were formerly grouped with the suite, formed in three ways, only one of which is related to the Regan Intrusive Suite.Study of 2.67 Ga old synvolcanic tonalite pluton revealed a strong covariance of light REE with those of the bimodal, calc-alkaline Hackett River Group of volcanic rocks. The data imply a common crustal source, but mass balance requires larger volumes of felsic volcanic rocks than are presently preserved, suggesting that much of the erupted felsic pyroclastic rocks were eroded. Partial melts from synvolcanic tonalite during subsequent regional metamorphism differentially depleted host rocks in REE and concentrated Eu and heavy rare-earth elements (HREE) in trondhjemite pegmatites.



Solid Earth ◽  
2018 ◽  
Vol 9 (2) ◽  
pp. 341-372 ◽  
Author(s):  
Jean-Baptiste P. Koehl ◽  
Steffen G. Bergh ◽  
Tormod Henningsen ◽  
Jan Inge Faleide

Abstract. The SW Barents Sea margin experienced a pulse of extensional deformation in the Middle–Late Devonian through the Carboniferous, after the Caledonian Orogeny terminated. These events marked the initial stages of formation of major offshore basins such as the Hammerfest and Nordkapp basins. We mapped and analyzed three major fault complexes, (i) the Måsøy Fault Complex, (ii) the Rolvsøya fault, and (iii) the Troms–Finnmark Fault Complex. We discuss the formation of the Måsøy Fault Complex as a possible extensional splay of an overall NE–SW-trending, NW-dipping, basement-seated Caledonian shear zone, the Sørøya–Ingøya shear zone, which was partly inverted during the collapse of the Caledonides and accommodated top–NW normal displacement in Middle to Late Devonian–Carboniferous times. The Troms–Finnmark Fault Complex displays a zigzag-shaped pattern of NNE–SSW- and ENE–WSW-trending extensional faults before it terminates to the north as a WNW–ESE-trending, NE-dipping normal fault that separates the southwesternmost Nordkapp basin in the northeast from the western Finnmark Platform and the Gjesvær Low in the southwest. The WNW–ESE-trending, margin-oblique segment of the Troms–Finnmark Fault Complex is considered to represent the offshore prolongation of a major Neoproterozoic fault complex, the Trollfjorden–Komagelva Fault Zone, which is made of WNW–ESE-trending, subvertical faults that crop out on the island of Magerøya in NW Finnmark. Our results suggest that the Trollfjorden–Komagelva Fault Zone dies out to the northwest before reaching the western Finnmark Platform. We propose an alternative model for the origin of the WNW–ESE-trending segment of the Troms–Finnmark Fault Complex as a possible hard-linked, accommodation cross fault that developed along the Sørøy–Ingøya shear zone. This brittle fault decoupled the western Finnmark Platform from the southwesternmost Nordkapp basin and merged with the Måsøy Fault Complex in Carboniferous times. Seismic data over the Gjesvær Low and southwesternmost Nordkapp basin show that the low-gravity anomaly observed in these areas may result from the presence of Middle to Upper Devonian sedimentary units resembling those in Middle Devonian, spoon-shaped, late- to post-orogenic collapse basins in western and mid-Norway. We propose a model for the formation of the southwesternmost Nordkapp basin and its counterpart Devonian basin in the Gjesvær Low by exhumation of narrow, ENE–WSW- to NE–SW-trending basement ridges along a bowed portion of the Sørøya-Ingøya shear zone in the Middle to Late Devonian–early Carboniferous. Exhumation may have involved part of a large-scale metamorphic core complex that potentially included the Lofoten Ridge, the West Troms Basement Complex and the Norsel High. Finally, we argue that the Sørøya–Ingøya shear zone truncated and decapitated the Trollfjorden–Komagelva Fault Zone during the Caledonian Orogeny and that the western continuation of the Trollfjorden–Komagelva Fault Zone was mostly eroded and potentially partly preserved in basement highs in the SW Barents Sea.



1997 ◽  
Vol 134 (5) ◽  
pp. 727-739 ◽  
Author(s):  
P. ALEKSANDROWSKI ◽  
R. KRYZA ◽  
S. MAZUR ◽  
J. ŻABA

The still highly disputable terrane boundaries in the Sudetic segment of the Variscan belt mostly seem to follow major strike-slip faults and shear zones. Their kinematics, expected to place important constraints on the regional structural models, is discussed in some detail. The most conspicuous is the WNW–ESE Intra-Sudetic Fault Zone, separating several different structural units of the West Sudetes. It showed ductile dextral activity and, probably, displacement magnitude of the order of tens to hundreds kilometres, during late Devonian(?) to early Carboniferous times. In the late Carboniferous (to early Permian?), the sense of motion on the Intra-Sudetic Fault was reversed in a semi-brittle to brittle regime, with the left-lateral offset on the fault amounting to single kilometres. The north–south trending Niemcza and north-east–southwest Skrzynka shear zones are left-lateral, ductile features in the eastern part of the West Sudetes. Similarly oriented (northeast–southwest to NNE–SSW) regional size shear zones of as yet undetermined kinematics were discovered in boreholes under Cenozoic cover in the eastern part of the Sudetic foreland (the Niedźwiedź and Nysa-Brzeg shear zones). One of these is expected to represent the northern continuation of the major Stare Mesto Shear Zone in the Czech Republic, separating the geologically different units of the West and East Sudetes. The Rudawy Janowickie Metamorphic Unit, assumed in some reconstructions to comprise a mostly strike-slip terrane boundary, is characterized by ductile fabric developed in a thrusting regime, modified by a superimposed normal-slip extensional deformation. Thrusting-related deformational fabric was locally reoriented prior to the extensional event and shows present-day strike-slip kinematics in one of the sub-units. The Sudetic Boundary Fault, although prominent in the recent structure and topography of the region, was not active as a Variscan strike-slip fault zone. The reported data emphasize the importance of syn-orogenic strike-slip tectonics in the Sudetes. The recognized shear sense is compatible with a strike-slip model of the northeast margin of the Bohemian Massif, in which the Kaczawa and Góry Sowie Units underwent late Devonian–early Carboniferous southeastward long-distance displacement along the Intra-Sudetic Fault Zone from their hypothetical original position within the Northern Phyllite Zone and the Mid-German Crystalline High of the German Variscides, respectively, and were juxtaposed with units of different provenance southwest of the fault. The Intra-Sudetic Fault Zone, together with the Elbe Fault Zone further south, were subsequently cut in the east and their eastern segments were displaced and removed by the younger, early to late Carboniferous, NNE–SSW trending, transpressional Moldanubian–Stare Mesto Shear Zone.



2020 ◽  
Vol 55 (4) ◽  
pp. 2881-2901
Author(s):  
Xin Xu ◽  
Changfeng Liu ◽  
Wencan Liu ◽  
Baoying Ye ◽  
Zixian Zhao ◽  
...  


1988 ◽  
Vol 25 (9) ◽  
pp. 1349-1364 ◽  
Author(s):  
D. C. McGregor ◽  
S. R. McCutcheon

The predominantly volcanic Piskahegan Group has commonly been considered Early Carboniferous, based on its stratigraphic position. However, spores recently discovered in the Carrow Formation, an alluvial fan deposit in the exocaldera facies, indicate that most, if not all, of the group is of Late Devonian (late Famennian) age. The spore assemblage includes several species reported previously from Ireland, Belgium, and eastern Europe, some of them apparently restricted to the southern parts of the Old Red Sandstone Continent in Late Devonian time. Comparison of records of earliest occurrences suggests that the incoming of some species was diachronous. Volcanic rocks of the Piskahegan Group are coeval with post-Acadian, tin–tungsten-bearing granites elsewhere in New Brunswick and are considered the surface expression of plutonism that resulted from Acadian continental collison.



1993 ◽  
Vol 30 (12) ◽  
pp. 2352-2365 ◽  
Author(s):  
Derek H. C. Wilton ◽  
Henry P. Longerich

Thirteen concentrates of uraniferous material were prepared from uranium occurrences in the Central Mineral Belt of Labrador. Host rocks to these occurrences include granitoid rocks of the Archean basement, ca. 2000 Ma metasedimentary rocks of the Lower Aillik Group, and 1860 Ma felsic volcanic rocks of the Upper Aillik Group. Common lead corrected Pb isotope data from inductively coupled plasma mass spectrometry analyses define 207Pb/206Pb ages ranging from 1805 to 1697 Ma for all but one sample, with a mean age of 1752 ± 27 Ma (1 σ). Ages calculated for individual samples are similar to those derived by previous workers using standard analytical techniques. Eleven of these samples define linear trends that intersect the U–Pb concordia at 1741 ± 23 Ma and a Tera-Wasserburg curve at 1740 ± 21 Ma, respectively. These data suggest that the occurrences are epigenetic with respect to host rocks and possibly related to a common metallogenic event, therefore resolving a long-standing controversy about the timing and mode of occurrence of the widespread uranium mineralization in this part of the belt. These ages broadly correlate with a period of migmatization, metamorphism, and granitoid plutonism, as defined by U–Pb zircon geochronological data for regional units. Rare earth element data for uraninite from all concentrates resemble those of uraninite in granite-related deposits. One sample has a distinctly different calculated 207Pb/206Pb age of 495 Ma, indicative of a later remobilization of the ca. 1741 Ma mineralization. The geochemical and geochronological data collectively suggest that the Central Mineral Belt uranium occurrences were related to posttectonic granite magmatism and have no direct genetic relationships with nongranitoid host rocks.



Sign in / Sign up

Export Citation Format

Share Document