Deep crustal structure and evolution of the rifted margin northeast of Newfoundland: results from LITHOPROBE East

1987 ◽  
Vol 24 (8) ◽  
pp. 1537-1549 ◽  
Author(s):  
C. E. Keen ◽  
G. S. Stockmal ◽  
H. Welsink ◽  
G. Quinlan ◽  
B. Mudford

As part of the LITHOPROBE East project, a marine deep seismic reflection line was run in 1984 across the continental margin northeast of Newfoundland. The seismic data define reflectors both within and below the sedimentary section. The deeper, intracrustal reflectors help determine the nature of extensional tectonics and associated sedimentary basin evolution on the rifted margin. The line also crosses the ocean–continent transition and helps define structure in that region. Interpretation of the seismic data shows that brittle extension of the upper crust was accommodated along at least one subhorizontal level of décollement. The most obvious style of deformation involves the shallowest level of décollement on which high-angle planar normal faults detach. A deeper level of décollement is inferred from the presence of low-angle listric normal faults penetrating the lower crust or deeper. There is no evidence for a unidirectional low-angle shear zone controlling extension. The seismic data are used to constrain a depth-dependent numerical model of extension. Best-fit estimates of the basin subsidence history support a model in which there are several episodes of stretching and in which there is significantly more stretching in the lower lithosphere than in the upper lithosphere. At the ocean–continent transition, the oceanic crust appears to thicken as it dips beneath the rifted continental crust. This may result from the production of basaltic magma and its migration to crustal levels during rifting.

2020 ◽  
Author(s):  
Craig Magee ◽  
Christopher Jackson

Uninterpreted seismic reflection images, a video of the seismic data, tables and figure describing the resolution and depth-conversion of the data, text and a figure discussing the methodology, and a comprehensive table of measurements and calculation.<br>


2021 ◽  
pp. 3942-3951
Author(s):  
Ali K. Jaheed ◽  
Hussein H. Karim

The Amarah Oil field structure was studied and interpreted by using 2-D seismic data obtained from the Oil  Exploration company. The study is concerned with Maysan Group Formation (Kirkuk Group) which is located in southeastern Iraq and belongs to the Tertiary Age. Two reflectors were detected based on synthetic seismograms and well logs (top and bottom Missan Group). Structural maps were derived from seismic reflection interpretations to obtain the location and direction of the sedimentary basin. Two-way time and depth maps were conducted depending on the structural interpretation of the picked reflectors to show several structural features. These included three types of closures, namely two anticlines extended in the directions of S-SW and NE, one nose structure (anticline) in the middle of the study area,  and structural faults in the northeastern part of the area, which is consistent with the general fault pattern. The seismic interpretation showed the presence of some stratigraphic features. Stratigraphic trap at the eastern part of the field, along with other phenomena, such as flatspot (mound), lenses, onlap, and toplap, were detected as indications of potential hydrocarbon accumulation in the region.


2020 ◽  
Author(s):  
Craig Magee ◽  
Christopher Jackson

Uninterpreted seismic reflection images, a video of the seismic data, tables and figure describing the resolution and depth-conversion of the data, text and a figure discussing the methodology, and a comprehensive table of measurements and calculation.<br>


1992 ◽  
Vol 129 (5) ◽  
pp. 633-636 ◽  
Author(s):  
N. R. Goulty ◽  
M. Leggett ◽  
T. Douglas ◽  
C. H. Emeleus

AbstractWe have conducted a seismic reflection test over a short profile on the granite of the Skye Tertiary central intrusive complex. From previous gravity modelling work it had been inferred that the granite is approximately 1.5 km thick and overlies basic rocks. The seismic data indicate that the granite is at least 2 km thick at the test location. Reflection events of alternating polarity between depths of 2.1 and 2.4 km suggest that basic and acidic sheets are interlayered at the base of the granitic mass.


Geosciences ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 117
Author(s):  
Maria Filomena Loreto ◽  
Camilla Palmiotto ◽  
Filippo Muccini ◽  
Valentina Ferrante ◽  
Nevio Zitellini

The southern part of Tyrrhenian back-arc basin (NW Sicily), formed due to the rifting and spreading processes in back-arc setting, is currently undergoing contractional tectonics. The analysis of seismic reflection profiles integrated with bathymetry, magnetic data and seismicity allowed us to map a widespread contractional tectonics structures, such as positive flower structures, anticlines and inverted normal faults, which deform the sedimentary sequence of the intra-slope basins. Two main tectonic phases have been recognised: (i) a Pliocene extensional phase, active during the opening of the Vavilov Basin, which was responsible for the formation of elongated basins bounded by faulted continental blocks and controlled by the tear of subducting lithosphere; (ii) a contractional phase related to the Africa-Eurasia convergence coeval with the opening of the Marsili Basin during the Quaternary time. The lithospheric tear occurred along the Drepano paleo-STEP (Subduction-Transform-Edge-Propagator) fault, where the upwelling of mantle, intruding the continental crust, formed a ridge. Since Pliocene, most of the contractional deformation has been focused along this ridge, becoming a good candidate for a future subduction initiation zone.


2015 ◽  
Vol 2015 (1) ◽  
pp. 1-3
Author(s):  
Abdulrhman H. Alghamdi ◽  
Alan R.A. Aitken ◽  
Michael C. Dentith

Geophysics ◽  
1988 ◽  
Vol 53 (7) ◽  
pp. 894-902 ◽  
Author(s):  
Ruhi Saatçilar ◽  
Nezihi Canitez

Amplitude‐ and frequency‐modulated wave motion constitute the ground‐roll noise in seismic reflection prospecting. Hence, it is possible to eliminate ground roll by applying one‐dimensional, linear frequency‐modulated matched filters. These filters effectively attenuate the ground‐roll energy without damaging the signal wavelet inside or outside the ground roll’s frequency interval. When the frequency bands of seismic reflections and ground roll overlap, the new filters eliminate the ground roll more effectively than conventional frequency and multichannel filters without affecting the vertical resolution of the seismic data.


2021 ◽  
Author(s):  
Pimpawee Sittipan ◽  
Pisanu Wongpornchai

Some of the important petroleum reservoirs accumulate beneath the seas and oceans. Marine seismic reflection method is the most efficient method and is widely used in the petroleum industry to map and interpret the potential of petroleum reservoirs. Multiple reflections are a particular problem in marine seismic reflection investigation, as they often obscure the target reflectors in seismic profiles. Multiple reflections can be categorized by considering the shallowest interface on which the bounces take place into two types: internal multiples and surface-related multiples. Besides, the multiples can be categorized on the interfaces where the bounces take place, a difference between long-period and short-period multiples can be considered. The long-period surface-related multiples on 2D marine seismic data of the East Coast of the United States-Southern Atlantic Margin were focused on this research. The seismic profile demonstrates the effectiveness of the results from predictive deconvolution and the combination of surface-related multiple eliminations (SRME) and parabolic Radon filtering. First, predictive deconvolution applied on conventional processing is the method of multiple suppression. The other, SRME is a model-based and data-driven surface-related multiple elimination method which does not need any assumptions. And the last, parabolic Radon filtering is a moveout-based method for residual multiple reflections based on velocity discrimination between primary and multiple reflections, thus velocity model and normal-moveout correction are required for this method. The predictive deconvolution is ineffective for long-period surface-related multiple removals. However, the combination of SRME and parabolic Radon filtering can attenuate almost long-period surface-related multiple reflections and provide a high-quality seismic images of marine seismic data.


2018 ◽  
Vol 123 (12) ◽  
pp. 10,810-10,830
Author(s):  
Michael Dentith ◽  
Huaiyu Yuan ◽  
Ruth Elaine Murdie ◽  
Perla Pina-Varas ◽  
Simon P. Johnson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document