A note on the Quesnel Lake Gneiss, Caribou Mountains, British Columbia

1989 ◽  
Vol 26 (7) ◽  
pp. 1503-1508
Author(s):  
John R. Montgomery ◽  
John V. Ross

The Quesnel Lake Gneiss is one of several large bodies of gneiss emplaced into the westernmost exposure of the Hadrynian to Paleozoic(?) metasedimentary rocks of the Snowshoe Group in the Omineca Belt, central British Columbia. The gneiss has a deformational history comparable to that of its enveloping rocks, and isotope studies indicate that its age of emplacement is Late Devonian to Early Mississippian and that its age of synkinematic metamorphism is mid-Jurassic. From petrochemical analyses and structural studies, we interpret the gneiss as being a late Paleozoic igneous intrusion into the probable western margin of the North American craton.

2003 ◽  
Vol 40 (7) ◽  
pp. 907-924 ◽  
Author(s):  
Renée-Luce Simard ◽  
Jaroslav Dostal ◽  
Charlie F Roots

The late Paleozoic volcanic rocks of the northern Canadian Cordillera lying between Ancestral North America to the east and the accreted terranes of the Omineca belt to the west record early arc and rift magmatism along the paleo-Pacific margin of the North American craton. The Mississippian to Permian volcano-sedimentary Klinkit Group extends discontinuously over 250 km in northern British Columbia and southern Yukon. The two stratotype areas are as follows: (1) in the Englishman Range, southern Yukon, the English Creek Limestone is conformably overlain by the volcano-sedimentary Mount McCleary Formation (Lower Clastic Member, Alkali-Basalt Member and Volcaniclastic Member), and (2) in the Stikine Ranges, northern British Columbia, the Screw Creek Limestone is conformably overlain by the volcano-sedimentary Butsih Formation (Volcaniclastic Member and Upper Clastic Member). The calc-alkali nature of the basaltic volcaniclastic members of the Klinkit Group indicates a volcanic-arc setting ((La/Yb)N = 2.77–4.73), with little involvement of the crust in their genesis (εNd = +6.7 to +7.4). Alkali basalts in the Mount McCleary Formation ((La/Yb)N = 12.5–17.8) suggest periodic intra-arc rifting events. Broadly coeval and compositionally similar volcano-sedimentary assemblages occur in the basement of the Mesozoic Quesnel arc, north-central British Columbia, and in the pericratonic Yukon–Tanana composite terrane, central Yukon, suggesting that they all represent pieces of a single long-lived, late Paleozoic arc system that was dismembered prior to its accretion onto Ancestral North America. Therefore, Yukon–Tanana terrane is possibly the equivalent to the basement of Quesnel terrane, and the northern Quesnel terrane has a pericratonic affinity.


1972 ◽  
Vol 9 (12) ◽  
pp. 1693-1702
Author(s):  
John V. Ross ◽  
William C. Barnes

A sequence of non-metamorphosed, little deformed, fossiliferous, sedimentary rocks, near Keremeos, southern British Columbia, unconformably overlies rocks having a history similar to that of the Vaseaux Formation, the most westerly exposed part of the Shuswap Complex of the southern Okanagan Valley. Fossils from the younger sequence have a late Mississippian – early Pennsylvanian age.This part of the southern Okanagan region has a deformational history that is pre-mid-Carboniferous and likely related to the Caribooan orogeny. This is in contrast to Late Paleozoic rocks at northern Okanagan localities and elsewhere in British Columbia that have under-gone strong deformation of probably Mesozoic age.


1997 ◽  
Vol 34 (10) ◽  
pp. 1379-1391 ◽  
Author(s):  
M. J. Harris ◽  
D. T. A. Symons ◽  
W. H. Blackburn ◽  
C. J. R. Hart

This is the first of several Lithoprobe paleomagnetic studies underway to examine geotectonic motions in the northern Canadian Cordillera. Except for one controversial study, estimates for terranes underlying the Intermontane Belt in the Yukon have been extrapolated from studies in Alaska, southern British Columbia, and the northwestern United States. The Whitehorse Pluton is a large unmetamorphosed and undeformed tonalitic body of mid-Cretaceous age (~112 Ma) that was intruded into sedimentary units of the Whitehorse Trough in the Stikinia terrane. Geothermobarometric estimates for eight sites around the pluton indicate that postmagnetization tilting has been negligible since cooling through the hornblende-crystallization temperature and that the pluton is a high-level intrusion. Paleomagnetic measurements for 22 of 24 sites in the pluton yield a well-defined characteristic remanent magnetization (ChRM) direction that is steeply down and northwards. The ChRM direction gives a paleopole of 285.5°E, 81.7°N (dp = 53°, dm = 5.7°). When compared with the 112 Ma reference pole for the North American craton, this paleopole suggests that the northern Stikinia terrane has been translated northwards by 11.0 ± 4.8° (1220 ± 530 km) and rotated clockwise by 59 ± 17°. Except for an estimate from the ~70 Ma Carmacks Group volcanics, this translation and rotation estimate agrees well with previous estimates for units in the central and southern Intermontane Belt. They suggest that the terranes of the Intermontane Belt have behaved as a fairly coherent unit since the Early Cretaceous, moving northward at a minimum average rate of 2.3 ± 0.4 cm/a between ~140 and ~45 Ma.


2019 ◽  
Vol 486 (4) ◽  
pp. 446-450
Author(s):  
V. A. Zaika ◽  
A. A. Sorokin ◽  
A. P. Sorokin

This paper presents the results of U–Pb (LA–ICP–MS) and Lu–Hf ­isotope studies of detrital zircons from metasedimentary rocks of the Tokur Terrane. It has been shown that metasedimentary rocks of the Tokur and Ekimchan formations are characterized by similar age peaks of detrital zircons, which indicates a close (or same) age of these formations. The lower age of the sedimentation is determined by the age of the youngest zircons of 326–323 Ma. The upper age boundary is determined of 254–251 Ma, based on the intruded of the Late Permian granitoids. The main sources of zircons in the metasedimentary rocks of the Tokur Terrane are the igneous and metamorphic complexes of the southeast framing of the North Asia Craton. The Tokur Terrane can be considered as a fragment of the Paleozoic accretionary complex, the formation in front of the southeastern margin of the North Asia Craton.


1981 ◽  
Vol 18 (12) ◽  
pp. 1767-1775 ◽  
Author(s):  
L. C. Struik

Three tectonostratigraphic successions are established from remapping of the area near Barkerville and Cariboo River. The first, of Late Proterozoic to Cambrian sediments, was deposited on the shallow to moderately deep platformal shelf west of and derived from the exposed North American craton. The second is an unconformably overlying Ordovician to Permian sequence of sedimentary and volcanic rocks representing a basinal environment with periodic highs. These packages of sediments were deposited on the North American craton and its western transitional extensions. The third succession, composed of oceanic chert and basalt of the Permo-Pennsylvanian Antler Formation, was thrust eastward over the other two during the early Mesozoic. The three successions were folded, faulted, and metamorphosed during the mid-Mesozoic Columbian Orogeny. The Devono-Mississippian Cariboo Orogeny, which was thought to have affected all of the first sequence and part of the second, could not be documented in its type locality. The geology of the Barkerville – Cariboo River area has many similarities with that of Selwyn Basin and Cassiar platform of northern British Columbia and Yukon.


2011 ◽  
Vol 85 (1) ◽  
pp. 29-31
Author(s):  
George D. Stanley ◽  
John-Paul Zonneveld

Cassianastraea is an enigmatic colonial Triassic cnidarian first described as a coral but subsequently referred to the Hydrozoa. We report here the first occurrence in Canada of fossils we designate as Cassianastraea sp. from the Williston Lake region of British Columbia. The specimens come from older collections of the Geological Survey of Canada, collected in Upper Triassic (Carnian) strata assigned to either the Ludington or Baldonnel Formations. While well known in reef associations of the former Tethys region, Cassianiastraea is relatively rare in North America. The Carnian Baldonnel Formation contains the earliest coral reefs from the North American craton and we suspect that Cassianastraea sp. also came from this reef association.


1972 ◽  
Vol 9 (4) ◽  
pp. 452-459 ◽  
Author(s):  
M. J. Kennedy ◽  
M. H. McGonigal

Structural studies of rocks in the Gander region of Newfoundland and on the coast to the north have indicated that rocks that were previously assigned to the Middle Ordovician Gander Lake Group actually consist of a composite sequence that contains pre-Middle Ordovician polyphase deformed metasedimentary rocks and even older gneissic rocks as well as Middle Ordovician sediments and mafic volcanics. The possible implications of these results are discussed and map units in the region are redefined.


1979 ◽  
Vol 16 (10) ◽  
pp. 1988-1997 ◽  
Author(s):  
Gregg W. Morrison ◽  
Colin I. Godwin ◽  
Richard L. Armstrong

Sixteen new K–Ar dates and four new Rb–Sr isochrons help define four plutonic suites in the Whitehorse map area, Yukon. The Triassic(?) suite, defined on stratigraphic evidence, is the southern extension of the Yukon Crystalline Terrane and is correlative with plutonic suites in the Intermontane Belt in British Columbia. The mid-Cretaceous (~100 Ma) suite in the Intermontane Belt in the Whitehorse map area is time equivalent to plutonic suites in the Omineca Crystalline Belt to the east. Late Cretaceous (~70 Ma) and Eocene (~55 Ma) suites include volcanic and subvolcanic as well as plutonic phases and are correlative with continental volcano–plutonic suites near the eastern margin of the Coast Plutonic Complex. The predominance of the mid-Cretaceous suite in the Intermontane Belt in Whitehorse and adjacent map areas in Yukon and northern British Columbia suggests that this area has undergone posttectonic magmatism more characteristic of the Omineca Crystalline Belt than of the Intermontane Belt elsewhere in the Canadian Cordillera.87Sr/86Sr initial ratio determinations suggest that the southern extension of the Yukon Crystalline Terrane in the western part of the Whitehorse map area and in northern British Columbia includes Precambrian crust separated from the North American craton by Paleozoic oceanic crust of the Intermontane Belt.


1983 ◽  
Vol 20 (12) ◽  
pp. 1891-1913 ◽  
Author(s):  
D. A. Archibald ◽  
J. K. Glover ◽  
R. A. Price ◽  
E. Farrar ◽  
D. M. Carmichael

K–Ar dates and U–Pb zircon dates define three periods of igneous activity in the southern Kootenay Arc: (1) emplacement of late-synkinematic to post-kinematic granodioritic plutons in mid-Jurassic time (170–165 Ma) accompanying amphibolite-facies regional metamorphism; (2) emplacement of post-kinematic granitic plutons in mid-Cretaceous time (~100 Ma); and (3) emplacement of small bodies of syenite in Eocene time (~50 Ma) in the western part of the area. Micas from mid-Jurassic plutons that yield the oldest K–Ar dates (158–166 Ma) also yield plateau-shaped 40Ar/39Ar age spectra. Age spectra for biotites younger than these but older than 125 Ma reflect thermal overprinting.In southeastern British Columbia, the Kootenay Arc marks the transition from the North American rocks of the Cordilleran miogeocline to the tectonic collage of allochthonous terranes that have been accreted to it.Deformation, metamorphism, and plutonism recorded in rocks of the southern Kootenay Arc commenced in mid-Jurassic time as a composite allochthonous terrane was accreted to and overlapped the western margin of North America. The geochronology and metamorphic geothermobarometry show that in less than 10 Ma between 166 and 156 Ma: (1) rocks as young as the late Proterozoic Windermere Supergroup and the early Paleozoic Lardeau Group were carried rapidly to depths of 20–24 km while being deformed and intruded by granitic rocks of a hornblende–biotite suite that were also being emplaced at a much shallower level in the overriding allochthonous terrane; and (2) the miogeoclinal rocks of the Windermere Supergroup in the southern Kootenay Arc were then uplifted by more than 7 km at an estimated rate of 2 mm/year, and thrust over the allochthonous terrane prior to being intruded by post-kinematic granitic rocks, many of which belong to the two-mica suite of mid-Cretaceous age..


Author(s):  
Earl B. Alexander ◽  
Roger G. Coleman ◽  
Todd Keeler-Wolfe ◽  
Susan P. Harrison

The Northern Cascade–Fraser River domain conforms to the Northern Cascade Mountains physiographic province in northwestern Washington and southern British Columbia, the San Juan Islands between the southern tip of Vancouver Island and the Northern Cascade Mountains, and much of the Interior Plateau province of British Columbia. The thread that connects these areas is the north–south Straight Creek–Fraser River fault system that runs through the Northern Cascade Mountains and northward along the Fraser River. The localities of domain 7 are along faults that branch off from this major fault system. The Northern Cascade Mountains are indeed mountainous, and the Interior Plateau of British Columbia is an area of dissected plateaus and scattered mountains. The Fraser River flows northwest in the Rocky Mountain Trench, which separates the North American craton on the northeast from accreted terranes on the southwest; then it turns around the northwest end of the Cariboo Mountains to the Interior Plateau. In the Interior Plateau, the Fraser River flows from Prince George south about 500 km to the Northern Cascade Mountains before turning westward toward the Pacific Coast. The northern part of domain 7 is in that part of the Fraser River basin, including tributaries northwest of Prince George, which is in the Interior Plateau province. Low, hilly terrain dominates the San Juan Islands. All of these areas in domain 7, except the Ingalls complex on southeast margin of the Northern Cascade Mountains, were covered by the Cordilleran ice sheet during the last stage of the Pleistocene glaciation, leaving <15 ka years for soil development on the current ground surfaces. Although alpine glaciers formed in the southeastern margin of the Northern Cascade Mountains, they did not cover all of the soils, allowing some of them longer time for development. Elevations in domain 7 range from sea level on San Juan Islands to mostly in the 600–1500 m range on the Interior Plateau of British Columbia, and up to 4392 m on Mt. Rainier in the Northern Cascade Mountains.


Sign in / Sign up

Export Citation Format

Share Document