Development of late Paleozoic volcanic arcs in the Canadian Cordillera: an example from the Klinkit Group, northern British Columbia and southern Yukon

2003 ◽  
Vol 40 (7) ◽  
pp. 907-924 ◽  
Author(s):  
Renée-Luce Simard ◽  
Jaroslav Dostal ◽  
Charlie F Roots

The late Paleozoic volcanic rocks of the northern Canadian Cordillera lying between Ancestral North America to the east and the accreted terranes of the Omineca belt to the west record early arc and rift magmatism along the paleo-Pacific margin of the North American craton. The Mississippian to Permian volcano-sedimentary Klinkit Group extends discontinuously over 250 km in northern British Columbia and southern Yukon. The two stratotype areas are as follows: (1) in the Englishman Range, southern Yukon, the English Creek Limestone is conformably overlain by the volcano-sedimentary Mount McCleary Formation (Lower Clastic Member, Alkali-Basalt Member and Volcaniclastic Member), and (2) in the Stikine Ranges, northern British Columbia, the Screw Creek Limestone is conformably overlain by the volcano-sedimentary Butsih Formation (Volcaniclastic Member and Upper Clastic Member). The calc-alkali nature of the basaltic volcaniclastic members of the Klinkit Group indicates a volcanic-arc setting ((La/Yb)N = 2.77–4.73), with little involvement of the crust in their genesis (εNd = +6.7 to +7.4). Alkali basalts in the Mount McCleary Formation ((La/Yb)N = 12.5–17.8) suggest periodic intra-arc rifting events. Broadly coeval and compositionally similar volcano-sedimentary assemblages occur in the basement of the Mesozoic Quesnel arc, north-central British Columbia, and in the pericratonic Yukon–Tanana composite terrane, central Yukon, suggesting that they all represent pieces of a single long-lived, late Paleozoic arc system that was dismembered prior to its accretion onto Ancestral North America. Therefore, Yukon–Tanana terrane is possibly the equivalent to the basement of Quesnel terrane, and the northern Quesnel terrane has a pericratonic affinity.

1997 ◽  
Vol 34 (6) ◽  
pp. 854-874 ◽  
Author(s):  
Filippo Ferri

In north-central British Columbia, a belt of upper Paleozoic volcanic and sedimentary rocks lies between Mesozoic arc rocks of Quesnellia and Ancestral North America. These rocks belong to two distinct terranes: the Nina Creek Group of the Slide Mountain terrane and the Lay Range Assemblage of the Quesnel terrane. The Nina Creek Group is composed of Mississippian to Late Permian argillite, chert, and mid-ocean-ridge tholeiitic basalt, formed in an ocean-floor setting. The sedimentary and volcanic rocks, the Mount Howell and Pillow Ridge successions, respectively, form discrete, generally coeval sequences interpreted as facies equivalents that have been interleaved by thrusting. The entire assemblage has been faulted against the Cassiar terrane of the North American miogeocline. West of the Nina Creek Group is the Lay Range Assemblage, correlated with the Harper Ranch subterrane of Quesnellia. It includes a lower division of Mississippian to Early Pennsylvanian sedimentary and volcanic rocks, some with continental affinity, and an upper division of Permian island-arc, basaltic tuffs and lavas containing detrital quartz and zircons of Proterozoic age. Tuffaceous horizons in the Nina Creek Group imply stratigraphic links to a volcanic-arc terrane, which is inferred to be the Lay Range Assemblage. Similarly, gritty horizons in the lower part of the Nina Creek Group suggest links to the paleocontinental margin to the east. It is assumed that the Lay Range Assemblage accumulated on a piece of continental crust that rifted away from ancestral North America in the Late Devonian to Early Mississippian by the westward migration of a west-facing arc. The back-arc extension produced the Slide Mountain marginal basin in which the Nina Creek Group was deposited. Arc volcanism in the Lay Range Assemblage and other members of the Harper Ranch subterrane was episodic rather than continuous, as was ocean-floor volcanism in the marginal basin. The basin probably grew to a width of hundreds rather than thousands of kilometres.


1997 ◽  
Vol 34 (10) ◽  
pp. 1379-1391 ◽  
Author(s):  
M. J. Harris ◽  
D. T. A. Symons ◽  
W. H. Blackburn ◽  
C. J. R. Hart

This is the first of several Lithoprobe paleomagnetic studies underway to examine geotectonic motions in the northern Canadian Cordillera. Except for one controversial study, estimates for terranes underlying the Intermontane Belt in the Yukon have been extrapolated from studies in Alaska, southern British Columbia, and the northwestern United States. The Whitehorse Pluton is a large unmetamorphosed and undeformed tonalitic body of mid-Cretaceous age (~112 Ma) that was intruded into sedimentary units of the Whitehorse Trough in the Stikinia terrane. Geothermobarometric estimates for eight sites around the pluton indicate that postmagnetization tilting has been negligible since cooling through the hornblende-crystallization temperature and that the pluton is a high-level intrusion. Paleomagnetic measurements for 22 of 24 sites in the pluton yield a well-defined characteristic remanent magnetization (ChRM) direction that is steeply down and northwards. The ChRM direction gives a paleopole of 285.5°E, 81.7°N (dp = 53°, dm = 5.7°). When compared with the 112 Ma reference pole for the North American craton, this paleopole suggests that the northern Stikinia terrane has been translated northwards by 11.0 ± 4.8° (1220 ± 530 km) and rotated clockwise by 59 ± 17°. Except for an estimate from the ~70 Ma Carmacks Group volcanics, this translation and rotation estimate agrees well with previous estimates for units in the central and southern Intermontane Belt. They suggest that the terranes of the Intermontane Belt have behaved as a fairly coherent unit since the Early Cretaceous, moving northward at a minimum average rate of 2.3 ± 0.4 cm/a between ~140 and ~45 Ma.


1999 ◽  
Vol 36 (3) ◽  
pp. 479-494 ◽  
Author(s):  
Martin de Keijzer ◽  
Paul F Williams ◽  
Richard L Brown

The Teslin zone in south-central Yukon has previously been described as a discrete zone with a steep foliation unique to the zone. It includes the Anvil assemblage and the narrowest portion of the Yukon-Tanana terrane (the Nisutlin assemblage), and is defined by post-accretionary faults: the Big Salmon fault to the west and the d'Abbadie fault system to the east. The zone was interpreted as a lithospheric suture or a crustal-scale transpression zone, and as the root zone of klippen lying on the North American craton to the east. We demonstrate that deformation and metamorphism are the same inside and outside the zone. The steep transposition foliation in the zone, in contrast to adjacent rocks to the east, coincides with the steep limb of a regional F3 structure. This fold has a shallow limb in the easternmost part of the zone and immediately east of the zone. Thus we reject earlier interpretations. If a suture exists between the obducted Anvil and Yukon-Tanana Nisutlin assemblages and North America, it is a shear zone that occurs at the base of the obducted rocks, which has been folded by the F3 fold. However, evidence that this thrust boundary is a lithospheric suture is lacking. A consequence of our interpretation is that North American rocks pass under the eastern Teslin zone and outcrop to the west of the Nisutlin and Anvil assemblages. This geometry precludes the possibility of the Teslin zone being the root zone of the klippen.


1981 ◽  
Vol 18 (12) ◽  
pp. 1767-1775 ◽  
Author(s):  
L. C. Struik

Three tectonostratigraphic successions are established from remapping of the area near Barkerville and Cariboo River. The first, of Late Proterozoic to Cambrian sediments, was deposited on the shallow to moderately deep platformal shelf west of and derived from the exposed North American craton. The second is an unconformably overlying Ordovician to Permian sequence of sedimentary and volcanic rocks representing a basinal environment with periodic highs. These packages of sediments were deposited on the North American craton and its western transitional extensions. The third succession, composed of oceanic chert and basalt of the Permo-Pennsylvanian Antler Formation, was thrust eastward over the other two during the early Mesozoic. The three successions were folded, faulted, and metamorphosed during the mid-Mesozoic Columbian Orogeny. The Devono-Mississippian Cariboo Orogeny, which was thought to have affected all of the first sequence and part of the second, could not be documented in its type locality. The geology of the Barkerville – Cariboo River area has many similarities with that of Selwyn Basin and Cassiar platform of northern British Columbia and Yukon.


2011 ◽  
Vol 85 (1) ◽  
pp. 29-31
Author(s):  
George D. Stanley ◽  
John-Paul Zonneveld

Cassianastraea is an enigmatic colonial Triassic cnidarian first described as a coral but subsequently referred to the Hydrozoa. We report here the first occurrence in Canada of fossils we designate as Cassianastraea sp. from the Williston Lake region of British Columbia. The specimens come from older collections of the Geological Survey of Canada, collected in Upper Triassic (Carnian) strata assigned to either the Ludington or Baldonnel Formations. While well known in reef associations of the former Tethys region, Cassianiastraea is relatively rare in North America. The Carnian Baldonnel Formation contains the earliest coral reefs from the North American craton and we suspect that Cassianastraea sp. also came from this reef association.


1989 ◽  
Vol 26 (7) ◽  
pp. 1503-1508
Author(s):  
John R. Montgomery ◽  
John V. Ross

The Quesnel Lake Gneiss is one of several large bodies of gneiss emplaced into the westernmost exposure of the Hadrynian to Paleozoic(?) metasedimentary rocks of the Snowshoe Group in the Omineca Belt, central British Columbia. The gneiss has a deformational history comparable to that of its enveloping rocks, and isotope studies indicate that its age of emplacement is Late Devonian to Early Mississippian and that its age of synkinematic metamorphism is mid-Jurassic. From petrochemical analyses and structural studies, we interpret the gneiss as being a late Paleozoic igneous intrusion into the probable western margin of the North American craton.


1979 ◽  
Vol 16 (10) ◽  
pp. 1988-1997 ◽  
Author(s):  
Gregg W. Morrison ◽  
Colin I. Godwin ◽  
Richard L. Armstrong

Sixteen new K–Ar dates and four new Rb–Sr isochrons help define four plutonic suites in the Whitehorse map area, Yukon. The Triassic(?) suite, defined on stratigraphic evidence, is the southern extension of the Yukon Crystalline Terrane and is correlative with plutonic suites in the Intermontane Belt in British Columbia. The mid-Cretaceous (~100 Ma) suite in the Intermontane Belt in the Whitehorse map area is time equivalent to plutonic suites in the Omineca Crystalline Belt to the east. Late Cretaceous (~70 Ma) and Eocene (~55 Ma) suites include volcanic and subvolcanic as well as plutonic phases and are correlative with continental volcano–plutonic suites near the eastern margin of the Coast Plutonic Complex. The predominance of the mid-Cretaceous suite in the Intermontane Belt in Whitehorse and adjacent map areas in Yukon and northern British Columbia suggests that this area has undergone posttectonic magmatism more characteristic of the Omineca Crystalline Belt than of the Intermontane Belt elsewhere in the Canadian Cordillera.87Sr/86Sr initial ratio determinations suggest that the southern extension of the Yukon Crystalline Terrane in the western part of the Whitehorse map area and in northern British Columbia includes Precambrian crust separated from the North American craton by Paleozoic oceanic crust of the Intermontane Belt.


1995 ◽  
Vol 32 (10) ◽  
pp. 1803-1824 ◽  
Author(s):  
Frederick A. Cook

Analyses of Lithoprobe and other data from southwestern Canada provide new insights on how this portion of the Cordillera formed during plate convergence along the western margin of North America. Crustal rocks are detached from their mantle lithosphere, which must have been consumed during subduction. Detachment occurred at or near the base of the crust beneath the Intermontane and (or) Omineca belts, probably along the tips of tectonic wedges while the rocks were still outboard of the relatively cool, mechanically rigid, North American craton. During the Late Cretaceous and early Tertiary, rotation of detached rocks caught between the North American craton and the oceanic plates accounts for some apparently conflicting results between paleomagnetic data that indicate large northward translation of rocks in the western Cordillera, and regional geological features that appear to preclude comparable amounts of translation of rocks in the eastern Cordillera during the same time interval. Transpression associated with rotation in the Foreland and Omineca belts ceased by the early Tertiary because detached allochthonous rocks of the crust became mechanically attached to, and thus physically part of, North America. Continued plate convergence led to regional transtensional shearing and associated crustal extension in the southern Canadian Cordillera, and perhaps as far inboard as northern Montana, where coeval magmatism was probably associated with new, or reactivation of ancient, lithosphere-penetrating fracture systems.


2015 ◽  
Vol 52 (7) ◽  
pp. 466-494 ◽  
Author(s):  
Tony Barresi ◽  
J.L. Nelson ◽  
J. Dostal ◽  
R. Friedman

Understanding the development of island arcs that accreted to the North American craton is critical to deciphering the complex geological history of the Canadian Cordillera. In the case of the Hazelton arc (part of the Stikine terrane, or Stikinia) in northwestern British Columbia, understanding arc evolution also bears on the formation of spatially associated porphyry Cu–Au, epithermal, and volcanogenic massive sulfide deposits. The Hazelton Group is a regionally extensive, long-lived, and exceptionally thick Upper Triassic to Middle Jurassic volcano-sedimentary succession considered to record a successor arc that was built upon the Paleozoic and Triassic Stikine and Stuhini arcs. In central Stikinia, near Terrace, British Columbia, the lower Hazelton Group (Telkwa Formation) comprises three volcanic-intrusive complexes (Mt. Henderson, Mt. O’Brien, and Kitselas) that, at their thickest, constitute almost 16 km of volcanic stratigraphy. Basal Telkwa Formation conglomerates and volcanic rocks were deposited unconformably on Triassic and Paleozoic arc-related basement. New U–Pb zircon ages indicate that volcanism initiated by ca. 204 Ma (latest Triassic). Detrital zircon populations from the basal conglomerate contain abundant 205–233 Ma zircons, derived from regional unroofing of older Triassic intrusions. Eleven kilometres higher in the section, ca. 194 Ma, rhyolites show that arc construction continued for >10 million years. Strata of the Nilkitkwa Formation (upper Hazelton Group) with a U–Pb zircon age of 178.90 ± 0.28 Ma represent waning island-arc volcanism. Telkwa Formation volcanic rocks have bimodal silica concentrations ranging from 48.1 to 62.8 wt.% and 72.3 to 79.0 wt.% and display characteristics of subduction-related magmatism (i.e., calc-alkaline differentiation with low Nb and Ti and high Th concentrations). Mafic to intermediate rocks form a differentiated suite that ranges from high-Al basalt to medium- to high-K andesite. They were derived from hydrous melting of isotopically juvenile spinel lherzolite in the mantle wedge and from subsequent fractional crystallization. Compared to basalts and andesites (εNd = +5 to +5.5), rhyolites have higher positive εNd values (+5.9 to +6.0) and overlapping incompatible element concentrations, indicating that they are not part of the same differentiation suite. Rather, the rhyolites formed from anatexis of arc crust, probably caused by magmatic underplating of the crust. This study documents a temporal and spatial co-occurrence of Hazelton Group volcanic rocks with a belt of economic Cu–Au porphyry deposits (ca. 205–195 Ma) throughout northwestern Stikinia. The coeval relationship is attributed to crustal underplating and intra-arc extension associated with slab rollback during renewed or reconfigured subduction beneath Stikinia, following the demise of the Stuhini arc in the Late Norian.


1994 ◽  
Vol 131 (2) ◽  
pp. 243-253 ◽  
Author(s):  
J. Dostal ◽  
B. N. Church

AbstractThe Pioneer Formation of southwestern British Columbia (Canada) is composed predominantly of middle to late Triassic pillow basalts. These rocks are an integral part of the Cadwallader and the Bridge River terranes that were delaminated from the oceanic lithosphere and stacked against the continental margin of the North American craton by middle Jurassic time. The basalts are underlain and locally intercalated with ribbon cherts and argillites that range in age from Mississippian to Triassic. The Triassic basalts are conformably overlain by clastic sediments containing late Carnian–Norian conodont fauna. The tholeiitic basalts have enriched and depleted REE patterns, and have been emplaced in an oceanic environment. The compositional variations of the basalts are attributed to dynamic partial melting of source rocks that are believed to have been part of the rising mantle diapir. According to our model, after initial melting in the garnet stability field, the mantle diapir rose up to the spinel stability field where it underwent subsequent melting. The reconstructed stratigraphy of the Bridge River area may be interpreted in terms of an oceanic plate moving over a mantle plume and into a trench where offscraping preserved tectonic lenses of the subducting plate in an accretionary prism.


Sign in / Sign up

Export Citation Format

Share Document