Sulphide remobilization in Archean volcano-sedimentary rocks and its significance in Proterozoic silver vein genesis, Cobalt, Ontario

1990 ◽  
Vol 27 (9) ◽  
pp. 1170-1181 ◽  
Author(s):  
Mark C. Smyk ◽  
David H. Watkinson

The Archean volcano-sedimentary succession at Cobalt, Ontario, consists mainly of submarine andesitic flows and turbiditic interflow sedimentary rocks. Steeply dipping faults and large-scale, tight to isoclinar folds have developed in these basement rocks. The faults commonly host silver-vein-bearing structures that extend upward into overlying Proterozoic units. Synvolcanic and synsedimentary base metal sulphide deposits are ubiquitous in the Archean rocks. Epigenetic sulphide mineralization consists of remobilized and replacement sulphides and minor sulpharsenides. Epigenetic sulphides occur in permeable rocks and in fault and fracture zones, commonly in juxtaposition with silver veins.The coincidence of silver veins and structures containing remobilized sulphides suggests that sulphide remobilization from Archean basement rocks into Proterozoic vein-bearing structures predated or accompanied vein development. Sulphide remobilization may have also facilitated the mobilization (leaching) of metals from basement sulphides into the vein-forming hydrothermal fluids.

1922 ◽  
Vol 53 (1) ◽  
pp. 209-229 ◽  
Author(s):  
G. W. Tyrrell

The more or less flat-lying sedimentary rocks that build up the plateau country of the northern, central, and eastern parts of Spitsbergen range in age from Downtonian to Tertiary. The rocks with which it is proposed to deal in this paper constitute the basement underlying this sedimentary succession in the east central part of Spitsbergen, in the region at the head, and to the east, of Klaas Billen Bay, the north-eastern branch of the Ice Fiord (Map, fig. I). An extension of these basement rocks is to be found in the mountains east of Wijde Bay, and similar rocks are to be found in other parts of Spitsbergen, notably in the western mountain ranges. Formations up to the Tertiary, as well as the Pre-Devonian, are involved in the folding of these western ranges; but the rocks dealt with in this paper may be designated as older than the oldest unfolded rocks in the country.


Lead isotope abundances are reported for ninety-eight galena specimens from Great Britain and Ireland. The analyses were made with a solid-source mass spectrometer. Comparison analyses show excellent agreement with results from other laboratories using solid-source techniques, but differences of 1 to 5% may occur for individual abundances when comparison is made with laboratories utilizing the lead tetramethyl vapour technique. The model chosen for calculation of ages from the isotopic composition is that of Holmes and Houtermans, using the published values of Patterson for the isotopic comparison of primeval lead in iron meteorites and modern lead in ocean sediments. This model permits calculation of the parameters uranium-238/lead-204 and thorium-232/uranium-238 in the source of the ores, which may exhibit small regional differences. The Holmes-Houtermans model ages of three suites of galenas from south-west England, northern England and southern Norway give excellent agreement with published values of the absolute ages of genetically associated igneous rocks. Other models used for interpreting lead isotope abundances do not generally give such satisfactory agreement. The significance of the isotope data from Great Britain and Ireland is discussed regionally in terms of the age of mineralization as well as the possible correlation and origin of different deposits. Of the ninety-eight leads investigated, eighty-six are assumed to be normal and to obey the conditions of the Holmes-Houtermans model. The remaining twelve are B -type leads, as defined by Houtermans, i.e. the model ages are demonstrably older than the true age of mineralization. The main criteria for recognizing normal leads are, first, the close regional grouping of isotope abundances and, secondly, that the model age does not exceed the age of the enclosing sedimentary rocks on the basis of the most recently published geological time-scales of the fossiliferous strata. Detailed consideration of normal leads suggests the existence of six periods of mineralization in the British Isles, ranging in age from Lower Palaeozoic to Upper Mesozoic. The two most important and clearly defined groups are associated with the Caledonian and Hercynian orogenies, respectively. There is, as yet, no isotopic evidence for Tertiary mineralization in the British Isles. A discussion of the causes of normal lead isotope abundances indicates that the latter could be the result of large-scale crustal homogenization processes in continental geosynclinal-orogenic belts. However, there is not enough critical evidence to identify definitely the source of normal lead ores with either crust or mantle. B -type leads probably arise by comparatively localized remobilization and regeneration of lead from metamorphic basement complexes with high lead/uranium ratios, or low radiogenic lead content. The source of such leads frequently appears to be somewhat heterogeneous and ore solutions may not have the opportunity for extensive mixing before the site of deposition is reached. However, B -type leads in some cases give an approximation to the true age of the basement rocks from which they are derived. Processes of this type probably account for the 5-type leads in the north-west and central highlands of Scotland and in County Galway, western Ireland, where the occurrences are situated in metamorphic basement rocks. No cases have been definitely recognized within the British Isles in which lead has a negative, or anomalously young, model age ( J -type leads). The results presented in this paper do not support the view of Russell and co-workers that most vein-type deposits which have traversed sedimentary rocks exhibit J -type anomalies—a consequence of their suggestion that B -type leads, as defined by Houtermans, should be regarded as normal leads.


2020 ◽  
Vol 50 (1) ◽  
pp. 207-235 ◽  
Author(s):  
Carl-Henric Wahlgren ◽  
Michael B. Stephens

AbstractThe Småland lithotectonic unit in the 2.0−1.8 Ga Svecokarelian orogen, southeastern Sweden, is dominated by a c. 1.81−1.77 Ga alkali–calcic magmatic suite (the Transscandinavian Igneous Belt or TIB-1). At least in its central part, the TIB-1 suite was deposited on, or emplaced into, c. 1.83–1.82 Ga calc-alkaline magmatic rocks with base metal sulphide mineralization and siliciclastic sedimentary rocks (the Oskarshamn–Jönköping Belt). Ductile deformation and metamorphism under low- to medium-grade conditions affected the Oskarshamn–Jönköping Belt prior to c. 1.81 Ga. Both suites were subsequently affected by low-grade ductile deformation, mainly along steeply dipping, east–west to NW–SE shear zones with dip-slip and dextral strike-slip displacement. Sinistral strike-slip NE–SW zones are also present. In the northern part of the lithotectonic unit, 1.9 Ga magmatic rocks, c. 1.87–1.81 Ga siliciclastic sedimentary rocks and basalt, and c. 1.86–1.85 Ga granite show fabric development, folding along steep NW–SE axial surfaces and medium- or high-grade metamorphism prior to c. 1.81 Ga and, at least partly, at c. 1.86–1.85 Ga; base metal sulphide, Fe oxide and U or U–REE mineralizations also occur. Magmatism and siliciclastic sedimentation along an active continental margin associated with subduction-related, accretionary tectonic processes is inferred over about 100 million years.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Chuhan Li ◽  
Shuo Song ◽  
Yuling Li ◽  
Chang Xu ◽  
Qiquan Luo ◽  
...  

AbstractHomogeneous earth-abundant metal catalysis based on well-defined molecular complexes has achieved great advance in synthetic methodologies. However, sophisticated ligand, hazardous activator and multistep synthesis starting from base metal salts are generally required for the generation of active molecular catalysts, which may hinder their broad application in large scale organic synthesis. Therefore, the development of metal cluster catalysts formed in situ from simple earth-abundant metal salts is of importance for the practical utilization of base metal resource, yet it is still in its infancy. Herein, a mixture of catalytic amounts of cobalt (II) iodide and potassium tert-butoxide is discovered to be highly active for selective hydroboration of vinylarenes and dihydroboration of nitriles, affording a good yield of diversified hydroboration products that without isolation can readily undergo further one pot transformations. It should be highlighted that the alkoxide-pinacolborane combination acts as an efficient activation strategy to activate cobalt (II) iodide for the generation of metastable heterotopic cobalt catalysts in situ, which is proposed to be catalytically active species.


1968 ◽  
Vol 5 (3) ◽  
pp. 737-747 ◽  
Author(s):  
J. D. Obradovich ◽  
Z. E. Peterman

This paper presents new radiometric data that permit some qualified statements to be made on the depositional history of the Belt sedimentary rocks. The period of deposition of sedimentary rocks of the Precambrian Belt Series has been placed within a broad time interval, for they rest on metamorphosed basement rock dated at ~ 1800 m.y. and are overlain by the Middle Cambrian Flathead Quartzite (circa 530 m.y.). Prior geochronometric data gathered during the last decade indicate most of the Belt Series to be older than ~ 1100 m.y.K–Ar and Rb–Sr techniques have been applied recently to a variety of samples selected from the whole gamut of the Belt Series. Glauconite from various formations in the sequence McNamara Formation down to the uppermost beds of the Empire Formation in the Sun River area has been dated at 1080 ± 27 m.y. by the K–Ar method and at 1095 ± 22 m.y. by the Rb–Sr mineral isochron method. A Rb–Sr whole-rock isochron based on argillaceous sedimentary rocks from this 5000-ft section gives an age of 1100 ± 53 m.y. The concordance of the preceding results and the K–Ar ages (1075 to 1110 m.y.) on Purcell sills and lava imply that this age represents the time of sedimentation of these units.A Rb–Sr isochron based on whole-rock samples stratigraphically far below the Umpire Formation— the Greyson Shale, Newland Limestone, Chamberlain Shale, and Neihart Quartzite in the Big Belt and Little Beit Mountains—yields an age of 1325 ± 15 m.y. This result is interpreted as indicating a substantial unconformity beneath the Belt Series, at least in central Montana; it also suggests a major hiatus, unsuspected from field evidence, between the uppermost part of the Empire Formation and the Greyson Shale.The results for the youngest of Belt rocks—the Pilcher Quartzite and the Garnet Range Formation, which are exposed in the Alberton region—are equivocal in that there is widespread dispersion. A large component of detrital muscovite in some of the samples could readily account for the magnitude and sense of this dispersion. A maximum age of ~930 m.y. based on an isochron of minimum slope through the various points may be inferred for this sequence. A K–Ar age of 760 m.y. obtained on biotite from a sill in the Garnet Range Formation provides a minimum age for these younger Belt rocks.Three distinct periods of sedimentation for Belt rocks sampled are suggested at ≥ 1300, 1100, and ≤ 900 m.y., with two substantial hiatuses of 200 m.y. or more. In addition the data for the sequence in the Big and Little Belt Mountains suggest that sedimentation may not have commenced for a period of possibly 400 m.y. after the metamorphism that affected basement rocks, while the data for the Garnet Range and Pilcher sequence suggest that sedimentation ceased some 200 to 400 m.y. prior to the deposition of the Middle Cambrian Flathead Quartzite.To suggest that the Belt sediments were deposited continuously over a period of 400 m.y. or more would imply an unusually low average rate of deposition of ≤ 0.1 ft/1000 yr, and this for the thickest part of the Belt Series. As a realistic expression of the depositional history of the Belt Series, both viewpoints are open to question, but the viewpoint that the Belt basin has been characterized by discontinuous sedimentation would be more in keeping with the principle of uniformity.


2012 ◽  
Vol 590 ◽  
pp. 51-55
Author(s):  
Hui Yang ◽  
Guo Dong Zhang ◽  
Yuan Mei Fei

With the self-designed welding powder formula,this experiment employed the SHS reaction to weld the base metal,which was steel Q235 here,then respectively used Olympus large-scale horizontal digital microscope to analyze the structure morphology of the welding seam's different regions,JEOL SEM to point-analyze and line-analyze elements' distribution near the the weld interface and HV-1000 CCD automatic measurement microscopic vickers hardness tester to measure the microhardness of the pure copper's welding seam.The experiment's result shows the hardness of different part of the welded joint varies largely,and that the join of alloy elements can increase the microhardness of the welding metal,and that the welding metal and base metal interdiffuse,grow and mix remarkably near the fusion line,realizing wonderful metallurgical bonding.


Sign in / Sign up

Export Citation Format

Share Document