An ichthyosaur forefin from the Triassic of British Columbia exemplifying Jurassic features

1991 ◽  
Vol 28 (10) ◽  
pp. 1553-1560 ◽  
Author(s):  
C. McGowan

New ichthyosaur material is reported from an Upper Triassic locality on Williston Lake, northeastern British Columbia. The paucity of ichthyosaurs from the Triassic of North America make this a potentially important site. An isolated forefin is described, which is unlike that of any Triassic species from North America but which compares closely with certain Lower Jurassic species from England and Germany. The new material suggests that the transition in the ichthyosaurian fauna at the close of the Triassic may have been less abrupt than was previously supposed.

1989 ◽  
Vol 26 (8) ◽  
pp. 1612-1616 ◽  
Author(s):  
T. P. Poulton ◽  
J. D. Aitken

Sinemurian phosphorites in southeastern British Columbia and southwestern Alberta conform with the "West Coast type" phosphorite depositional model. The model indicates that they were deposited on or near the Early Jurassic western cratonic margin, next to a sea or trough from which cold water upwelled. This suggests that the allochthonous terrane Quesnellia lay well offshore in Sinemurian time. The sea separating Quesnellia from North America was partly floored by oceanic crust ("Eastern Terrane") and partly by a thick sequence of rifted, continental terrace wedge rocks comprising the Purcell Supergroup and overlying Paleozoic sequence. This sequence must have been depressed sufficiently that access of upwelling deep currents to the phosphorite depositional area was not impeded.


1977 ◽  
Vol 14 (11) ◽  
pp. 2578-2592 ◽  
Author(s):  
J. W. Hillhouse

Paleomagnetic evidence indicates that the extensive early Mesozoic basalt field near McCarthy, south-central Alaska, originated far south of its present position relative to North America. Results obtained from the Middle and (or) Upper Triassic Nikolai Greenstone suggest that those basalts originated within 15° of the paleoequator. This position is at least 27° (3000 km) south of the Upper Triassic latitude predicted for McCarthy on the basis of paleomagnetic data from continental North America. The Nikolai pole, as determined from 50 flows sampled at 5 sites, is at 2.2° N, 146.1° E (α95 = 4.8°). The polarity of the pole is ambiguous, because the corresponding magnetic direction has a low inclination and a westerly declination. Therefore, the Nikolai may have originated near 15° N latitude or, alternatively, as far south as 15° S latitude. In addition to being displaced northward, the Nikolai block has been rotated roughly 90° about the vertical axis. A measure of the reliability of this pole is provided by favorable results from the following tests: (1) Within one stratigraphic section, normal and reversed directions from consecutive flows are antipolar. (2) Consistent directions were obtained from sites 30 km apart. (3) Application of the fold test indicated the magnetization was acquired before the rocks were folded. (4) The magnetizations of several pilot specimens are thermally stable up to 550 °C. The stable component is probably carried by magnetite with lamellar texture, a primary feature commonly acquired by a basalt at high temperature during initial cooling of the magma. Geologic and paleomagnetic evidence indicates that the Nikolai is allochthonous to Alaska and that, together with associated formations in southern Alaska and British Columbia, it is part of a now disrupted equatorial terrane.


1981 ◽  
Vol 18 (3) ◽  
pp. 457-468 ◽  
Author(s):  
C. M. Henderson ◽  
D. G. Perry

Late Early Jurassic heteroporid bryozoa occur in arenaceous carbonates near Turnagain Lake, north-central British Columbia. The occurrence of Heteropora tipperi n. sp. marks the first documentation of Early Jurassic cyclostome bryozoa in North America. The associated fauna, comprising the ammonite Harpoceras, the foraminifer Reinholdella, and the pelecypod Weyla, establish the age as Early Toarcian. Other associated biota include an endolithic green alga(e), which is demonstrated to have a commensal relationship with H. tipperi n. sp. Sedimentologic and biotic data from the host strata point to a shallow, temperate, high-energy, normal marine environment.


1977 ◽  
Vol 14 (2) ◽  
pp. 318-326 ◽  
Author(s):  
J. W. H. Monger ◽  
B. N. Church

The Takla Group of north-central British Columbia as originally defined contained volcanic and sedimentary rocks of Late Triassic and Jurassic ages. As redefined herein, it consists of three formations in the McConnell Creek map-area. Lowest is the Dewar Formation, composed of argillite and volcanic sandstone that is largely the distal equivalent of basic flows and coarse volcaniclastic rocks of the Savage Mountain Formation. These formations are overlain by the volcaniclastic, basic to intermediate Moosevale Formation. These rocks are Upper Triassic (upper Karnian and lower Norian). They are unconformably overlain by Lower Jurassic rocks of the Hazelton Group.


2011 ◽  
Vol 85 (1) ◽  
pp. 29-31
Author(s):  
George D. Stanley ◽  
John-Paul Zonneveld

Cassianastraea is an enigmatic colonial Triassic cnidarian first described as a coral but subsequently referred to the Hydrozoa. We report here the first occurrence in Canada of fossils we designate as Cassianastraea sp. from the Williston Lake region of British Columbia. The specimens come from older collections of the Geological Survey of Canada, collected in Upper Triassic (Carnian) strata assigned to either the Ludington or Baldonnel Formations. While well known in reef associations of the former Tethys region, Cassianiastraea is relatively rare in North America. The Carnian Baldonnel Formation contains the earliest coral reefs from the North American craton and we suspect that Cassianastraea sp. also came from this reef association.


1995 ◽  
Vol 32 (3) ◽  
pp. 292-303 ◽  
Author(s):  
C. McGowan

A small, nearly complete ichthyosaur skeleton is described from the Upper Triassic of Williston Lake, in northeastern British Columbia. The age of the material, based on conodonts, is early Norian. Although the length of the entire skeleton would probably not have exceeded 1 m, there is no evidence of immaturity–quite the contrary. Named Hudsonelpidia brevirostris, the new taxon shares some features with Triassic taxa, as exemplified by Mixosaurus from the European Middle Triassic, and with post-Triassic ichthyosaurs like Ichthyosaurus, from the English Lower Jurassic. Mixosaurian characters include an elongate tibia with emarginated pre- and postaxial margins, and phalanges in the hindfin with pre- and postaxial notches. Like Ichthyosaurus, the humérus is elongate rather than broad, so too is the pubis and ischium. Mixosaurus is unusual among Triassic ichthyosaurs for having a relatively large orbit, but the orbit is even more prominent in Hudsonelpidia, probably because of the shortness of the snout. Hudsonelpidia has an unusually large femur that approaches the length of the humérus, dwarfing the rest of the hindfin. The rostrum is unique in being perforated by foramina, but this could possibly be an abnormality.


1996 ◽  
Vol 33 (1) ◽  
pp. 24-32 ◽  
Author(s):  
Chris McGowan

A new ichthyosaur species is described from the Upper Triassic (middle Norian) of Williston Lake, northeastern British Columbia. Aside from the foramen enclosed between the radius and ulna–a characteristic of Triassic ichthyosaurs–the new specimen is typical of Lower Jurassic forms. Indeed, if the specimen had been collected from the English lower Liassic, there would have been no hesitation in referring it to the common English genus Ichthyosaurus, a taxonomic course I follow here. Referring the new species to Ichthyosaurus extends the geological range of the genus by approximately 9 Ma, to the middle Norian. Ichthyosaurus janiceps sp. nov. has an abbreviated snout, like that of Ichthyosaurus breviceps, but it is a much larger species, and has a distinctly different forefin.


1992 ◽  
Vol 11 (2) ◽  
pp. 177-188 ◽  
Author(s):  
Paul R. Bown

Abstract. Sediments of the Kunga and Maude groups (Early Norian-Aalenian) from the Queen Charlotte Islands, British Columbia, have yielded the first records of early Mesozoic calcareous nannofossils in North America. These occurrences are the only record of Triassic nannofossils away from the recent discoveries in the Tethyan area (Austria, Indonesia, and the northwestern Australian margin). The nannofossil assemblages from the Queen Charlotte Islands are generally poor to moderately preserved, with species diversities typical for this time interval (2–10 species). The assemblages are comparable to those from northwest Europe, for the Lower Jurassic, and to those from Austria, Indonesia, and the Australian margin, for the Upper Triassic. They show compatible stratigraphical ranges, allowing the application of existing biostratigraphical zonations. Palaeobiogeographical interpretations are inconclusive and fail to positively confirm a low latitude (Tethyan) position for the Queen Charlotte Islands, as indicated by macrofossil data. However, Triassic nannofossil assemblages have yet to be described from high palaeolatitude locations. In addition, certain features of the Lower Jurassic assemblages may indicate Tethyan affinities but also distinguish these assemblages from those which have been previously documented. These features include the absence of Schizosphaerella punctulata, which occurs abundantly in the circum-Mediterranean region and was previously thought to be “cosmopolitan” in distribution; and the absence of Mitrolithus jansae which characterizes “Tethyan” assemblages in the circum-Mediterranean area. The Queen Charlotte Islands results are compared with new nannofossil data from Argentina, Timor and North America.


Sign in / Sign up

Export Citation Format

Share Document