Aspalathus linearis(Rooibos tea) as potential phytoremediation agent: a review on tolerance mechanisms for aluminum uptake

2013 ◽  
Vol 21 (2) ◽  
pp. 85-92 ◽  
Author(s):  
Sheku A. Kanu ◽  
Jonathan O. Okonkwo ◽  
Felix D. Dakora

Aspalathus linearis (Burm. F.) R. Dahlg., commonly referred to as Rooibos tea, grows naturally in nutrient-poor, sandy, acidic soils (pH 3–5.3) with high aluminum concentration ranging from 110 to 275 μg Al g−1in the Cederberg’s mountainous areas in South Africa. Earlier studies found significant differences in Al concentration in organs of A. linearis, with roots having higher amounts (1262–4078 μg Al g−1), suggesting that the plant is capable of accumulating excess Al in acidic soils. Identification of the mineralogical constituents of organs of A. linearis using X-ray diffraction (XRD) analysis revealed the presence of an Al–Si complex (aluminosilicate or hydroxyaluminosilicate (HAS) species) in the shoot and root, possibly to internally ameliorate Al toxicity. In addition, A. linearis has specialized cluster roots that exude Al-chelating organic acid ligands such as citric, malic, and malonic acids. Organic acids can bind strongly to Al in the plant and rhizosphere to reverse its phytotoxic effects to the plants. Field and glasshouse studies revealed significant differences in pH between rhizosphere and nonrhizosphere soils of A. linearis and also showed that roots of the plant release OH−and HCO3−anions to raise rhizosphere pH possibly to immobilize Al through complexation. Furthermore, A. linearis is easily infected by arbuscular mycorrhizae (AM) fungi, but mycorrhizal associations are known to inhibit transport of metallic cations into plant roots. These features of A. linearis are perceived as good indicators for bioremediation; and the plant could, therefore, be a suitable candidate for phytoremediation technologies such as phytoaccumulation, phytostabilization, and phytodegradation. The environmental and economic implications of the potential of A. linearis to bioremediate Al-contaminated soils are briefly discussed. Furthermore, this review briefly highlights future studies investigating the utilization of the shoot of A. linearis as adsorbent for the removal of trace and (or) heavy metal from aqueous solutions.

Author(s):  
Sushil K. Chaudhary ◽  
Maxleene Sandasi ◽  
Felix Makolo ◽  
Fanie R. van Heerden ◽  
Alvaro M. Viljoen

Horticulturae ◽  
2021 ◽  
Vol 7 (9) ◽  
pp. 302
Author(s):  
Miguel A. Quiñones ◽  
Susana Fajardo ◽  
Mercedes Fernández-Pascual ◽  
M. Mercedes Lucas ◽  
José J. Pueyo

Two white lupin (Lupinus albus L.) cultivars were tested for their capacity to accumulate mercury when grown in Hg-contaminated soils. Plants inoculated with a Bradyrhizobium canariense Hg-tolerant strain or non-inoculated were grown in two highly Hg-contaminated soils. All plants were nodulated and presented a large number of cluster roots. They accumulated up to 600 μg Hg g−1 DW in nodules, 1400 μg Hg g−1 DW in roots and 2550 μg Hg g−1 DW in cluster roots. Soil, and not cultivar or inoculation, was accountable for statistically significant differences. No Hg translocation to leaves or seeds took place. Inoculated L. albus cv. G1 plants were grown hydroponically under cluster root-promoting conditions in the presence of Hg. They accumulated about 500 μg Hg g−1 DW in nodules and roots and up to 1300 μg Hg g−1 DW in cluster roots. No translocation to the aerial parts occurred. Bioaccumulation factors were also extremely high, especially in soils and particularly in cluster roots. To our knowledge, Hg accumulation in cluster roots has not been reported to date. Our results suggest that inoculated white lupin might represent a powerful phytoremediation tool through rhizosequestration of Hg in contaminated soils. Potential uptake and immobilization mechanisms are discussed.


2015 ◽  
Vol 12 (2) ◽  
pp. 260-265
Author(s):  
Baghdad Science Journal

This study is conducted to determine the activity of plant Vica faba and two isolated from arbuscular mycorrhizae fungi (A,B) in bioremediation of soil pollution by Nickel and Lead elements in north and south of Baghdad city. The results showed that the average of soil pollution by Nickel and Lead elements in north of Baghdad was less than the average of soil pollution in the south of Baghdad which recorded 29.0,9.0PPm and 42.0, 25.0PPm respectively. The results show that the isolate A from the polluted soil is more active from isolate B which isolate from unpolluted soil for bioremediation. Vica faba recorded more in accumulate the Lead element in shoot system which was 19.65PPm and in root system was 27.2PPm and for Nickel element 24.65, 27.55PPm in shoot and root respectively.


Pedosphere ◽  
2013 ◽  
Vol 23 (5) ◽  
pp. 549-563 ◽  
Author(s):  
Ho-Man LEUNG ◽  
Zhen-Wen WANG ◽  
Zhi-Hong YE ◽  
Kin-Lam YUNG ◽  
Xiao-Ling PENG ◽  
...  

2008 ◽  
Vol 88 (3) ◽  
pp. 283-294 ◽  
Author(s):  
Christine P Landry ◽  
Chantal Hamel ◽  
Anne Vanasse

Ridge-tilled corn (Zea mays L.) could benefit from arbuscular mycorrhizal (AM) fungi. Under low soil disturbance, AM hyphal networks are preserved and can contribute to corn nutrition. A 2-yr study was conducted in the St. Lawrence Lowlands (Quebec, Canada) to test the effects of indigenous AM fungi on corn P nutrition, growth, and soil P in field cropped for 8 yr under ridge-tillage. Phosphorus treatments (0, 17, 35 kg P ha-1) were applied to AM-inhibited (AMI) (fungicide treated) and AM non-inhibited (AMNI) plots. Plant tissue and soil were sampled 22, 48 and 72 days after seeding (DAS). P dynamics was monitored in situ with anionic exchange membranes (PAEM) from seeding to the end of July. AMNI plants showed extensive AM colonization at all P rates. At 22 DAS, AMI plants had decreased growth in the absence of P inputs, while AMNI plants had higher dry mass (DM) and P uptake in unfertilized plots. The PAEM was lower in the AMNI unfertilized soils in 1998 and at all P rates in 1999, indicating an inverse relationship between P uptake and PAEM. At harvest, grain P content of AMNI plants was greater than that of AMI plants. In 1998, only AMI plants had decreased yield in the absence of P fertilization. In 1999, AMNI plants produced greater grain yield than AMI plants at all P rates. AM fungi improve the exploitation of soil P by corn thereby maintaining high yields while reducing crop reliance on P inputs in RT. Key words: Arbuscular mycorrhizae, ridge-tillage, soil P dynamics, corn, P nutrition


2011 ◽  
Vol 57 (No. 12) ◽  
pp. 541-546 ◽  
Author(s):  
G. Qiao ◽  
X.P. Wen ◽  
L.F. Yu ◽  
X.B. Ji

  Pigeon pea (Cajanus cajan) has been rapidly grown in the drought-striken Karst regions of southwest China. Present research aimed to investigate the effects of arbuscular mycorrhizae (AM) on the drought tolerance of pigeon pea, as well as to elucidate the physiological responses of AM-colonized seedlings to the water deficit. As subjected to drought stress, AM symbiosis (AMD) highly led to the positive effects on root system, plant height and stem diameter. AMD demonstrated a remarkably higher chlorophyll content, photosynthetic rate and stomatal conductance. The soluble sugar in AMD was significantly higher than that of the non-AM seedlings (NAMD), indicating the enhanced tolerance at least partially correlated with osmotic solute. Conversely, the proline (Pro) of AMD was lower, revealing the excessive Pro was not imperative for drought tolerance. After 30 days drought stress, AMD gave around a third less lipid peroxides than that of NAMD. Rather, the root activities of AMD were significantly higher than that of the latter after 10 days drought stress. Thereby, AM fungi might substantially elevate the tolerance to drought of pigeon pea, and the cumulative effects contributed to the enhanced tolerance. To date, this has been the first report concerning the enhancement of drought tolerance via AM colonization in this legume species.  


Phytomedicine ◽  
2009 ◽  
Vol 16 (5) ◽  
pp. 437-443 ◽  
Author(s):  
Atsutoshi Kawano ◽  
Hiromichi Nakamura ◽  
Shu-ichi Hata ◽  
Miki Minakawa ◽  
Yutaka Miura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document