Application of decision analysis to evaluate recovery actions for threatened Snake River spring and summer chinook salmon (Oncorhynchus tshawytscha)

2001 ◽  
Vol 58 (12) ◽  
pp. 2431-2446 ◽  
Author(s):  
Calvin N Peters ◽  
David R Marmorek

There is uncertainty about the importance of various factors in explaining declines of chinook salmon (Oncorhynchus tshawytscha) populations in the Snake River basin of Oregon and Idaho. This uncertainty has prevented implementation of long-term recovery actions for these stocks. We used simulation models and decision analysis to evaluate three management actions for seven index stocks of Snake River spring and summer chinook salmon: (i) continue current operation of the Columbia River hydropower system, (ii) maximize transportation of smolts, and (iii) natural river drawdown (breaching) of four Snake River dams. Decision analysis provided a useful approach for including multiple hypotheses about population responses to environmental and anthropogenic factors, systematically assessing the importance of alternative hypotheses, and identifying risk-averse recovery strategies that meet survival and recovery goals over a wide range of uncertainties. We found that the most influential uncertainties were related to hypothesized causes of estuary and ocean mortality. Current monitoring provides limited information on survival in this life stage; carefully designed management experiments are more likely to generate useful information. Given that these uncertainties exist, drawdown was the most risk-averse action, meeting long-term survival and recovery goals over a wider range of assumptions than the other actions.


2001 ◽  
Vol 58 (12) ◽  
pp. 2447-2458 ◽  
Author(s):  
Calvin N Peters ◽  
David R Marmorek ◽  
Richard B Deriso

We used models and decision analysis to incorporate uncertainties into evaluations of two recovery actions for Snake River fall chinook salmon (Oncorhynchus tshawytscha): (i) maximize transportation and (ii) natural river drawdown of four lower Snake River dams. In the retrospective analysis, we compared alternative stock–recruit models and selected one that was consistent with historical spawner–recruit data and allowed us to implement alternative hypotheses about hydrosystem, hatchery, harvest, and environmental effects. In the prospective analysis, we used this model and posterior distributions of its parameters in a decision analysis framework to compare projected escapements for the two actions over a range of alternative hypotheses. We found that drawdown was most risk averse, producing larger long-term escapements than maximizing transportation under most hypotheses and model assumptions. Maximizing transportation and drawdown produced similar escapements only if we assumed high or increasing estuary and ocean survival rates of transported fish coupled with either severe reductions in harvest rates or insensitivity of upstream survival rates to dam construction and removal. Although there was relatively little information available for Snake River fall chinook (particularly about estuary and ocean survival rates of transported smolts), decision analysis was a useful technique for organizing data, assessing actions over a range of uncertainties, and identifying research priorities.



2001 ◽  
Vol 58 (6) ◽  
pp. 1196-1207 ◽  
Author(s):  
C E Petrosky ◽  
H A Schaller ◽  
P Budy

Stream-type chinook salmon (Oncorhynchus tshawytscha) populations in the Snake River (northwest United States) have declined dramatically since completion of the federal hydrosystem. Identifying the life stage that is limiting the survival of these stocks is crucial for evaluating the potential of management actions to recover these stocks. We tested the hypothesis that a decrease in productivity and survival rate in the freshwater spawning and rearing (FSR) life stage since completion of the hydropower system could explain the decline observed over the life cycle. The decline of chinook populations following completion of the hydrosystem was not accompanied by major survival changes in the FSR life stage. FSR productivity showed no significant decline, and the FSR survival rate decline was small relative to the overall decline. However, significant survival declines did occur in the smolt-to-adult stage coincident primarily with hydrosystem completion, combined with poorer climate conditions and possibly hatchery effects. Potential improvements in survival that occur only at the FSR life stage are unlikely to offset these impacts and increase survival to a level that ensures the recovery of Snake River stream-type chinook.



2006 ◽  
Vol 2 (S237) ◽  
pp. 408-408
Author(s):  
Richard de Grijs

Young, massive star clusters (YMCs) are the most notable and significant end products of violent star-forming episodes triggered by galaxy collisions and close encounters. The question remains, however, whether or not at least a fraction of the compact YMCs seen in abundance in extragalactic starbursts, are potentially the progenitors of (≳10 Gyr) old globular cluster (GC)-type objects. If we could settle this issue convincingly, one way or the other, the implications of such a result would have far-reaching implications for a wide range of astrophysical questions, including our understanding of the process of galaxy formation and assembly, and the process and conditions required for star (cluster) formation. Because of the lack of a statistically significant sample of YMCs in the Local Group, however, we need to resort to either statistical arguments or to the painstaking approach of case-by-case studies of individual objects in more distant galaxies.



1996 ◽  
Vol 183 (6) ◽  
pp. 2523-2531 ◽  
Author(s):  
M López-Hoyos ◽  
R Carrió ◽  
R Merino ◽  
L Buelta ◽  
S Izui ◽  
...  

The bcl-2 protooncogene has been shown to provide a survival signal to self-reactive B cells, but it fails to override their developmental arrest after encounter with antigen. Furthermore, constitutive expression of bcl-2 in B cells does not promote the development of autoimmune disease in most strains of mice, indicating that signals other than those conferred by bcl-2 are required for long-term survival and differentiation of self-reactive B cells in vivo. To further examine the factors that are required for the pathogenesis of autoimmune disease, we have assessed the effect of bcl-2 overexpression on the development of host-versus-graft disease, a self-limited model of systemic autoimmune disease. In this model, injection of spleen cells from (C57BL/6 x BALB/c)F1 hybrid mice into BALB/c newborn parental mice induces immunological tolerance to donor tissues and activation of autoreactive F1 donor B cells through interactions provided by allogeneic host CD4+ T cells. BALB/c newborns injected with spleen cells from (C57BL/6 x BALB/c)F1 mice expressing a bcl-2 transgene in B cells developed high levels of anti-single-stranded DNA and a wide range of pathogenic autoantibodies that were not or barely detectable in mice injected with nontransgenic spleen cells. In mice injected with transgenic B cells, the levels of pathogenic autoantibodies remained high during the course of the study and were associated with long-term persistence of donor B cells, development of a severe autoimmune disease, and accelerated mortality. These results demonstrate that bcl-2 can provide survival signals for the maintenance and differentiation of autoreactive B cells, and suggest that both increased B cell survival and T cell help play critical roles in the development of certain forms of systemic autoimmune disease.



2021 ◽  
Vol 78 (1) ◽  
pp. 68-77
Author(s):  
Catherine S. Austin ◽  
Timothy E. Essington ◽  
Thomas P. Quinn

Median timing of reproduction in salmonid populations is generally consistent among years, reflecting long-term patterns of natural selection from characteristics of the local environment. However, altered selection from factors related to climate change or human intervention might shift timing over generations, with implications for the population’s persistence. To study these processes, we modeled median timing of redd (nest) counts as an index of spawning timing by natural-origin Chinook salmon (Oncorhynchus tshawytscha) in the Skagit River system in Washington State, USA. Over the last 2–6 decades, natural-origin salmon have been spawning later by 0.03–0.52 days·year–1, while a naturally spawning group that is influenced by strays from a hatchery has been spawning earlier by 0.19 days·year–1. Trends in the spawning timing of hatchery-origin strays may reflect opposing selection from the hatchery, where egg take for propagation has become earlier by 0.58 days·year–1. As mean August river temperatures have risen over the period of record, hatchery timing trends may be moving in the opposite direction from the plastic or adaptive patterns expressed by natural-origin fish.





2006 ◽  
Vol 52 (4) ◽  
pp. 748-755 ◽  
Author(s):  
Stanley H. Faeth ◽  
Cyd E. Hamilton


Sign in / Sign up

Export Citation Format

Share Document