Using food web model results to inform stock assessment estimates of mortality and production for ecosystem-based fisheries management

2010 ◽  
Vol 67 (9) ◽  
pp. 1490-1506 ◽  
Author(s):  
Sarah K. Gaichas ◽  
Kerim Y. Aydin ◽  
Robert C. Francis

Examining food web relationships for commercially important species enhances fisheries management by identifying sources of variability in mortality and production that are not included in standard single-species stock assessments. We use a static mass-balance model to evaluate relationships between species in a large marine ecosystem, the coastal Gulf of Alaska, USA. We focus on food web relationships for four case-study species: Pacific halibut ( Hippoglossus stenolepis ), longnose skate ( Raja rhina ), walleye pollock ( Theragra chalcogramma ), and squids (order Teuthoidea). For each, we present the species’ position within the food web, evaluate fishing mortality relative to predation mortality, and evaluate diet compositions. We find that high trophic level (TL) species, whether commercially valuable (halibut) or incidentally caught (skates), have mortality patterns consistent with single-species assessment assumptions, where fishing mortality dominates natural mortality. However, assessments for commercially valuable (pollock) or incidentally caught (squids) mid-TL species can be enhanced by including food web derived predation information because fishing mortality is small compared with high and variable predation mortality. Finally, we outline food web relationships that suggest how production of species may change with diet composition or prey availability.


2021 ◽  
Vol 8 ◽  
Author(s):  
Lei Xing ◽  
Yong Chen ◽  
Bai Li ◽  
Kisei R. Tanaka ◽  
Robert Boenish ◽  
...  

Single-species fisheries management (SSFM) is applied to many fisheries ecosystems around the world. The associated ecological impacts are usually not well understood due to the lack of considering trophic interactions among species in the ecosystem. This impedes the implementation of SSFM in an ecosystem context and reduces our ability to understand the possible ecological impacts of fishing activities. This study focuses on two economically important species in the Jiaozhou Bay, China: the short-lived, fast-growing, and relatively abundant Japanese mantis shrimp (Oratosquilla oratoria) and the long-lived, slow-growing, and less abundant Korean rockfish (Sebastes schlegelii). We evaluated how varying trophic interactions influenced O. oratoria and S. schlegelii (i.e., target-species) who were managed under constant fishing pressure. The increase of fishing pressure to other species (i.e., non-target species) was beneficial to O. oratoria and S. schlegelii. O. oratoria was more sensitive to the decrease of fishing pressure to other species. The predation mortality of age-0 O. oratoria increased with the increased fishing pressure to other species. The predation mortality of age-1 O. oratoria and age-0 S. schlegelii had negative relationships with the fishing pressure to other species. Age-1 S. schlegelii seemed not to be sensitive to the changes in trophic interactions. The predation mortality of O. oratoria and S. schlegelii had bigger changes than the starvation mortality after fishing changed. It suggested the prey-predator relationship had a bigger impact than the food competition. The increase of high-trophic-level fish Johnius belangerii fishery positively impacted O. oratoria, but negatively impacted S. schlegelii. S. schlegelii was more sensitive to the changes of the low-trophic-level fish Pholis fangi fishery. Given the complex dynamics of ecosystems, this study highlights the importance of species-specific responses of fishes to shifting trophic interactions in fisheries management.



2004 ◽  
Vol 61 (3) ◽  
pp. 414-431 ◽  
Author(s):  
Yunne-Jai Shin ◽  
Philippe Cury

For most fish species, strong environmental constraints imposed by living in an aquatic medium have produced converging streamlined body forms without prehensile appendices. This similarity in body shapes highlights a common predation constraint: a predatory fish must have a jaw large enough to swallow its prey. Fish diets may then reflect local prey availability and predator–prey size ratios. Based on this size-based opportunistic predation process, the multispecies individual-based model OSMOSE (Object-oriented Simulator of Marine ecOSystem Exploitation) is used to investigate to what extent the size distribution of fish communities can contribute to better our understanding of the functioning of marine food webs and the ecosystem effects of fishing. Strong similarity in shape is found between simulated size spectra and those described in empirical studies. The existence of a curvature towards small size classes is discussed in the light of the size-based predation hypothesis, which implies that smaller fish may undergo higher predation mortality. Applying linear and quadratic regressions to the simulated size spectra allows the detection of variations in fishing pressure and the proposal of different ways to quantify them. In particular, it is shown that the slope of the size spectrum decreases quasilinearly with fishing mortality and that the curvature could help to detect ecosystem overexploitation.



2002 ◽  
Vol 59 (9) ◽  
pp. 1429-1440 ◽  
Author(s):  
Jason S Link ◽  
Jon K.T Brodziak ◽  
Steve F Edwards ◽  
William J Overholtz ◽  
David Mountain ◽  
...  

We examined a suite of abiotic, biotic, and human metrics for the northeast U.S. continental shelf ecosystem at the aggregate, community, and system level (>30 different metrics) over three decades. Our primary goals were to describe ecosystem status, to improve understanding of the relationships between key ecosystem processes, and to evaluate potential reference points for ecosystem-based fisheries management (EBFM). To this end, empirical indicators of ecosystem status were examined and standard multivariate statistical methods were applied to describe changes in the system. We found that (i) a suite of metrics is required to accurately characterize ecosystem status and, conversely, that focusing on a few metrics may be misleading; (ii) assessment of ecosystem status is feasible for marine ecosystems; (iii) multivariate points of reference can be determined for EBFM; and (iv) the concept of reference directions could provide an ecosystem level analog to single-species reference points.



2020 ◽  
Vol 96 (4) ◽  
pp. 617-640
Author(s):  
Andrea Dell'Apa ◽  
Joshua P Kilborn ◽  
William J Harford

Recent global improvements to fisheries sustainability have been made through the adoption of more holistic management frameworks, such as the ecosystem approach to fisheries management (EAFM) and ecosystem-based fisheries management (EBFM), and a concurrent transition from a focus on single species or stocks to multispecies and ecosystems. In the US, federal and regional fisheries management encompass multiple layers of comprehensive, ecosystem focused management strategies for living marine resources within its network of large marine ecosystems (LMEs). Here, we provide an overview for the US portion of the Gulf of Mexico large marine ecosystem (GOM-LME) by examining multiple aspects of its fishery management scheme through the lenses of EAFM, EBFM, and the integrated ecosystem assessment (IEA) framework that has been used worldwide to advise, inform, and operationalize ecosystem management. The US-GOM's fishery management and ecosystem community appears to be keeping pace with other US regional efforts. However, more tools like fishery ecosystem plans (FEPs), which are conducive to the effective integration of ecosystem considerations into fishery management processes, are needed to inform and guide the work of regional managers, decision-makers, and stakeholders. Therefore, we propose a structured planning process aimed at advancing the development and implementation of a GOM-FEP, and describe two case studies of EAFM and EBFM applications, respectively, that can help to navigate through our proposed planning process. This work offers strategic guidance and insights to support efforts of regional fishery managers to translate ecosystem management principles, approaches, and objectives into an "action oriented" FEP in the GOM-LME.



2014 ◽  
Vol 72 (1) ◽  
pp. 275-283 ◽  
Author(s):  
Michael D. Smith ◽  
Elizabeth A. Fulton ◽  
Robert W. Day

Abstract Fisheries management is commonly based on the outputs of single-species stock assessment models. While such models are appropriate for tactical issues such as quota setting, they typically omit explicit trophic interactions between different parts of the ecosystem. To successfully manage multiple fisheries in the same ecosystem, we need to understand how fishing one species may indirectly affect other species. In this paper, we used a simulation model of the southern Benguela ecosystem, built in the Atlantis framework, to explore fisheries interaction effects. We first measured the impact of fishing different stocks individually at FMSY, the hypothetical level of fishing effort which produces maximum sustainable yield (MSY) in a single-species modelling context. We then applied FMSY to all stocks simultaneously and compared the simultaneous yield with the sum of yields from the individual applications of FMSY. Contrary to expectations, the total catch was higher under the simultaneous scenario. We explored our results by studying the influences of trophic interaction between species at different levels of the foodweb, and found that our overall result was driven by two key factors: volumetric dominance of small pelagic fish in the total catch, and asymmetric influences of competition and predation between piscivorous and planktivorous species. The simultaneous increase in fishing pressure across multiple species in the model led to increased effective carrying capacity for small pelagic species (due to reduced competition), but reduced carrying capacity for piscivorous species (due to reduced small pelagic prey). This work has important implications for the design of tactical multispecies models for use in ecosystem-based fisheries management.



2015 ◽  
Vol 73 (4) ◽  
pp. 1042-1050 ◽  
Author(s):  
Tara E. Dolan ◽  
Wesley S. Patrick ◽  
Jason S. Link

Abstract Ecosystem management (EM) suffers from linguistic uncertainty surrounding the definition of “EM” and how it can be operationalized. Using fisheries management as an example, we clarify how EM exists in different paradigms along a continuum, starting with a single-species focus and building towards a more systemic and multi-sector perspective. Focusing on the specification of biological and other systemic reference points (SRPs) used in each paradigm and its related regulatory and governance structures, we compare and contrast similarities among these paradigms. We find that although EM is a hierarchical continuum, similar SRPs can be used throughout the continuum, but the scope of these reference points are broader at higher levels of management. This work interprets the current state of the conversation, and may help to clarify the levels of how EM is applied now and how it can be applied in the future, further advancing its implementation.



2021 ◽  
Vol 9 ◽  
Author(s):  
Katherine Lee ◽  
Jenny Apriesnig ◽  
Hongyan Zhang

This manuscript uses seminal models in fisheries economics to assess the ecosystem effects of policy focused on sustainable management of a single fish stock. Economic models representing fishing decisions under open access and two fisheries management schemes are parameterized using data from the four management units in the Lake Erie Yellow Perch (Persus flavenscens) fishery and linked with an end-to-end ecosystem model representative of the lake food web and spatial species interactions. We find that the sustainable harvest rules from single species economic models result in significant changes to biomass of species in planktivorous, omnivorous, and piscivorous groups in the ecosystem model. These impacts can be traced through the food web back to harvest rules implemented in the management units. Most notably, the biomass of several non-target but also commercially harvested fish species are reduced through Yellow Perch fishing. In some cases, the economic losses to coexisting fisheries exceeds benefits gained from implementing the Yellow Perch management scheme. Our results imply that while an ecosystem-based approach to fisheries management requires weighing trade-offs between multiple fisheries, an ex ante understanding of the whole-system consequences of harvest rules can be critical for developing policy that overall enhances ecological and social wellbeing.



2019 ◽  
Vol 25 (2) ◽  
pp. 103
Author(s):  
Khairul Amri ◽  
Afrisa Novalina ◽  
Bram Setyadji

Bullet tuna is considered as one of the important species for tuna purse seine fisheries in Indonesia, especially in archipelagic waters. However, little is known about its biological characteristics which proven to be pivotal in stock assessment. The purpose of this research was to determine some of the biological stock indicators for bullet tuna (Auxis rochei) from Banda Sea and its adjacent waters. The study was conducted from February to November 2016. The length of the bullet tuna caught were in between 18.5-32.7 cmFL (mode=24 cmFL). Growth pattern was isometric with b=3.01 and R2=0.84 Sex ratio was balanced between male and female (1:1). The spawning season allegedly from June to November. The length at 50% mature (L50) was 23.6 cmFL. A good indicator for the fisheries, where at least 75% of the mature fish caught were already spawned. The asymptotic length (L) was 33.63 cmFL, with coefficient of growth (K) around 0.73/year. Natural mortality (M) estimated at 1.87/year, fishing mortality (F) estimated at 2.20/year and total mortality (Z) was 4.07/year. The exploitation level (E) was estimated to be at maximum level (E=0.54/year), for precautionary purpose, the number of efforts should be reduced down to 8% from current effort. 



2021 ◽  
Vol 8 ◽  
Author(s):  
Jacob W. Bentley ◽  
Mathieu G. Lundy ◽  
Daniel Howell ◽  
Steven E. Beggs ◽  
Alida Bundy ◽  
...  

Although frequently suggested as a goal for ecosystem-based fisheries management, incorporating ecosystem information into fisheries stock assessments has proven challenging. The uncertainty of input data, coupled with the structural uncertainty of complex multi-species models, currently makes the use of absolute values from such models contentious for short-term single-species fisheries management advice. Here, we propose a different approach where the standard assessment methodologies can be enhanced using ecosystem model derived information. Using a case study of the Irish Sea, we illustrate how stock-specific ecosystem indicators can be used to set an ecosystem-based fishing mortality reference point (FECO) within the “Pretty Good Yield” ranges for fishing mortality which form the present precautionary approach adopted in Europe by the International Council for the Exploration of the Sea (ICES). We propose that this new target, FECO, can be used to scale fishing mortality down when the ecosystem conditions for the stock are poor and up when conditions are good. This approach provides a streamlined quantitative way of incorporating ecosystem information into catch advice and provides an opportunity to operationalize ecosystem models and empirical indicators, while retaining the integrity of current assessment models and the FMSY-based advice process.



2011 ◽  
Vol 68 (6) ◽  
pp. 1305-1317 ◽  
Author(s):  
Éva E. Plagányi ◽  
Scarla J. Weeks ◽  
Tim D. Skewes ◽  
Mark T. Gibbs ◽  
Elvira S. Poloczanska ◽  
...  

Abstract Plagányi, É. E., Weeks, J. S., Skewes, T. D., Gibbs, M. T., Poloczanska, E. S., Norman-López, A., Blamey, L. K., Soares, M., and Robinson, W. M. L. 2011. Assessing the adequacy of current fisheries management under changing climate: a southern synopsis. – ICES Journal of Marine Science, 68: 1305–1317. Climate change is likely to have a significant impact on both target and non-target marine stocks worldwide, with the concomitant need for management strategies capable of sustaining fishing in future. We use several southern hemisphere fisheries to highlight the likely impacts of climate change at a range of levels, from individual to population responses, as well as ecosystem ramifications. Examples span polar (Antarctic krill fishery), temperate (west coast pelagic fishery, abalone and rock lobster), and tropical (Torres Strait rock lobster) commercially important fisheries. Responses of these fisheries to either past observed environmental changes or projected future changes are used to deduce some anticipated implications of climate change for fisheries management, including economic impacts and governance considerations. We evaluate the effectiveness of current single-species assessment models, management strategy evaluation approaches and multispecies assessment models as future management tools to cope with likely climate-related changes. Non-spatial stock assessment models will have limited ability to separate fishery effects from the impacts of climate change. Anthropogenic climate change is occurring at a time-scale relevant to current fisheries management strategic planning and testing. Adaptive management frameworks (with their feedback loops) are ideal for detecting and adapting to changes in target stocks.



Sign in / Sign up

Export Citation Format

Share Document