A Syringe Gas-Stripping Procedure for Gas-Chromatographic Determination of Dissolved Inorganic and Organic Carbon in Fresh Water and Carbonates in Sediments

1973 ◽  
Vol 30 (10) ◽  
pp. 1441-1445 ◽  
Author(s):  
Michael P. Stainton

A simple, rapid method for determining dissolved inorganic carbon in water is described. A 20-cm3 sample of water is drawn into a 50-cm3 polypropylene syringe and acidified by injection of 1 cm3 of dilute sulphuric acid. Twenty-nine cubic centimeters of helium at atmospheric pressure is injected into the syringe followed by 10 sec of manual agitation to partition CO2 between gas and liquid phase. The gas phase containing 60% of CO2 from the sample is then analyzed by gas chromatography. This method has been used to determine dissolved inorganic and organic carbon in Canadian Shield waters and to determine total carbonates in sediments.

Radiocarbon ◽  
2014 ◽  
Vol 56 (3) ◽  
pp. 1115-1127 ◽  
Author(s):  
A J T Jull ◽  
G S Burr ◽  
W Zhou ◽  
P Cheng ◽  
S H Song ◽  
...  

There have been a number of studies that have attempted to estimate the past radiocarbon reservoir effects in Qinghai Lake, China. This article reports on measurements on modern samples collected at the lake in October 2003 and October 2009, which allow us to better understand the systematics of the lake and shed new insights on the processes occurring in the lake. The results indicate that atmospheric exchange of 14C is the main process affecting surface dissolved inorganic carbon (DIC) in the lake, but dissolved organic carbon (DOC) can be explained as a combination of sources. We also conclude that sediment carbon can be explained by a model where input from the surrounding rivers and groundwater are important, in agreement with the model of Yu et al. (2007).


Radiocarbon ◽  
2015 ◽  
Vol 57 (3) ◽  
pp. 407-423 ◽  
Author(s):  
Evelyn M Keaveney ◽  
Paula J Reimer ◽  
Robert H Foy

This article presents a case study of Lower Lough Erne, a humic, alkaline lake in northwest Ireland, and uses the radiocarbon method to determine the source and age of carbon to establish whether terrestrial carbon is utilized by heterotrophic organisms or buried in sediment. Stepped combustion was used to estimate the degree of the burial of terrestrial carbon in surface sediment. Δ14C, δ13C, and δ15N values were measured for phytoplankton, dissolved inorganic carbon (DIC), dissolved organic carbon (DOC), and particulate organic carbon (POC). Δ14C values were used to indicate the presence of different sources of carbon, including bedrock-derived inorganic carbon, “modern,” “recent,” “subsurface,” and “subfossil” terrestrial carbon in the lake. The use of 14C in conjunction with novel methods (e.g. stepped combustion) allows the determination of the pathway of terrestrial carbon in the system, which has implications for regional and global carbon cycling.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Peter H. Barry ◽  
Mayuko Nakagawa ◽  
Donato Giovannelli ◽  
J. Maarten de Moor ◽  
Matthew Schrenk ◽  
...  

AbstractIn 2017, fluid and gas samples were collected across the Costa Rican Arc. He and Ne isotopes, C isotopes as well as total organic and inorganic carbon concentrations were measured. The samples (n = 24) from 2017 are accompanied by (n = 17) samples collected in 2008, 2010 and 2012. He-isotopes ranged from arc-like (6.8 RA) to crustal (0.5 RA). Measured dissolved inorganic carbon (DIC) δ13CVPDB values varied from 3.55 to −21.57‰, with dissolved organic carbon (DOC) following the trends of DIC. Gas phase CO2 only occurs within ~20 km of the arc; δ13CVPDB values varied from −0.84 to −5.23‰. Onsite, pH, conductivity, temperature and dissolved oxygen (DO) were measured; pH ranged from 0.9–10.0, conductivity from 200–91,900 μS/cm, temperatures from 23–89 °C and DO from 2–84%. Data were used to develop a model which suggests that ~91 ± 4.0% of carbon released from the slab/mantle beneath the Costa Rican forearc is sequestered within the crust by calcite deposition with an additional 3.3 ± 1.3% incorporated into autotrophic biomass.


Sign in / Sign up

Export Citation Format

Share Document