Le Panache du Saguenay

1983 ◽  
Vol 40 (1) ◽  
pp. 52-60 ◽  
Author(s):  
J. Lebel ◽  
E. Pelletier ◽  
M. Bergeron ◽  
N. Belzile ◽  
G. Marquis

The large difference between the alkalinity of the fresh waters of the St. Lawrence River (1.475 mmol∙kg−1) and the Saguenay River (0.134 mmol∙kg−1) was used to locate the region on the St. Lawrence estuary which is under the influence of the Saguenay River. This method has the advantage over classical measurements such as salinity and temperature that it is independent of the upwelling of deep water in this region. Data was obtained in the St. Lawrence estuary near the mouth of the Saguenay fjord using a network of 33 stations at slack low tide and 23 stations at slack high tide. The results show that, at low tide, Saguenay water forms a plume which extends more than 10 km from the mouth of the fjord into the estuary. At high tide the plume is restricted to the surface layer as the Saguenay waters are pushed back into the fjord.

1980 ◽  
Vol 17 (8) ◽  
pp. 978-984 ◽  
Author(s):  
E. Pelletier ◽  
J. Lebel

This paper proposes the use of total alkalinity as a mixing index at the mouth of Saguenay fjord on the St. Lawrence estuary. The large difference in the total alkalinity between the fresh waters from the St. Lawrence River (1.475 meq/kg) and those from the Saguenay River (0.134 meq/kg) allows us to define and calculate a dilution factor relative to total alkalinity (δAt), which is very sensitive to the presence of the fjord marine water in the estuarine mixing area both at the surface and at depth. The authors show the advantage of use of the dilution factor (δAT) in comparison to some other classical oceanographic parameters such as temperature, salinity, density, and dissolved oxygen.


1973 ◽  
Vol 10 (9) ◽  
pp. 1380-1396 ◽  
Author(s):  
Bruno F. d'Anglejan ◽  
Eric C. Smith

The distribution of total suspended matter in the estuary of the St. Lawrence River was studied by quantitative filtration through membrane filters. Tidal fluctuations in the vertical gradients of suspensoids were followed at fixed stations along the estuary. The concentrations varied from nearly 40 mg/1 below near Ile d'Orléans, to values less than 1 mg/1 at the downstream end of the upper estuary near the Saguenay River entrance. The tidal mean concentrations for the fixed stations ranged from 20 mg/1 to 2 mg/1. A turbidity maximum, which develops because of entrapments of particles by the tidal circulation, extends for 100 km below Quebec City. In this zone large vertical gradients changing in intensity with the tide by resuspension of settled material exist above the bottom. The total suspended matter is 60% to more than 90% inorganic by weight, and has a mean particle size between 5 and 7 μ. The annual rate of transport of suspended material out of the upper estuary at a section near the Saguenay River is estimated at less than 1 × 106 metric tons.Chemical and mineralogical analyses were performed on 23 suspensoid samples collected by centrifuging large volumes of water. The clay mineral composition of the less than 2 μ fraction is on the average 1.5% montmorillonite, 8% kaolinite, 31% chlorite, and 60% illite. However, large time and space variations are found both in the chemistry and mineralogy of the suspended matter.


1990 ◽  
Vol 25 (1) ◽  
pp. 1-14
Author(s):  
R.J. Allan

Abstract The Saguenay Fjord enters the north shore of the St. Lawrence River estuary. The St. Lawrence River is one source of a variety of toxic metals and organic chemicals to its estuary. Some of these chemicals are transported by the river from its source in Lake Ontario and others are added along its course. However, the second major source of water inflow to the St. Lawrence Estuary is the Saguenay Fjord, which is by no means free of contamination. This paper overviews the types of toxic metals and organic chemical contamination and sources in the fjord proper and upstream in its drainage basin. The principal contaminants recorded in bottom sediments are polyaromatic hydrocarbons and mercury. An extensive forest products industry may also be a source of toxic chlorinated organic chemicals. The combined (peak) inputs of these chemicals to the Saguenay Fjord system was in the past and may have continued for many years, even decades. The relationship between the type of contaminants introduced in the past to the St. Lawrence estuary by the St. Lawrence River and the Saguenay Fjord may have implications concerning contamination of the beluga whale population which is located most frequently in the estuary near the fjord inflow.


1975 ◽  
Vol 32 (12) ◽  
pp. 2373-2377 ◽  
Author(s):  
Jean Claude Therriault ◽  
Guy Lacroix

A strong similarity is demonstrated in summertime physicochemical characteristics between the deep water of the Saguenay fjord and the surface water of the St. Lawrence estuary. Summer warming of the deep layer of the Saguenay is progressive from the mouth towards the head of the fjord. The mechanism proposed is the penetration of surface estuarine water over the shallow sill during the rising tide. The abnormally high chlorophyll values in this deep layer may be explained by the same advective mechanism.


1981 ◽  
Vol 59 (6) ◽  
pp. 1079-1093 ◽  
Author(s):  
Chang-Tai Shih ◽  
Luc Rainville ◽  
Delphine C. Maclellan

All copepodite stages of Bradyidius similis were taken in plankton samples from the deep water of the Saguenay fjord and the adjacent St. Lawrence estuary during the months of May to October in 1974. They are described and illustrated. The spinules on the posterior surface of the second to fourth pairs of legs, which were reported absent in this species, appear on copepodite IV onwards.


2005 ◽  
Vol 50 (5) ◽  
pp. 1654-1666 ◽  
Author(s):  
Denis Gilbert ◽  
Bjorn Sundby ◽  
Charles Gobeil ◽  
Alfonso Mucci ◽  
Gilles-H. Tremblay

1974 ◽  
Vol 52 (8) ◽  
pp. 1087-1090 ◽  
Author(s):  
David C. Judkins ◽  
Robert Wright

The arctic–subarctic mysids Boreomysis nobilis and Mysis litoralis were abundant in midwater trawl collections from the Saguenay fjord but were almost absent in collections from the confluent St. Lawrence estuary and Gulf of St. Lawrence. Collections from the estuary and Gulf contained boreal mysids more typical of the latitude. The presence of apparently isolated populations of B. nobilis and M. litoralis in the fjord is further evidence that it is an arctic enclave within a boreal region. The hypothesis that populations of arctic and subarctic species in the Saguenay fjord are relicts from a previous glacial period is questioned in view of the possibility of more recent faunal exchange between the Arctic and the fjord via intermediate arctic enclaves on the eastern Canadian coast.


1985 ◽  
Vol 42 (2) ◽  
pp. 332-341 ◽  
Author(s):  
Patrick Quellet ◽  
Julian J. Dodson

The vertical and horizontal distribution of anadromous rainbow smelt (Osmerus mordax) larvae from hatching in their natal river to their occupation of nursery areas in the middle estuary of the St. Lawrence River was documented to describe the mechanism responsible for the retention of smelt larvae in this area. Peaks of larval abundance observed downstream of the spawning grounds indicate a 24-h periodicity in hatching and the introduction of larvae into the riverine circulation. No retention of larvae was observed between the spawning ground and the downstream portion of the natal river. Our evidence indicates daytime accumulation of larvae at the mouth of the natal river, possibly resulting from the negative phototaxis exhibited by small smelt larvae. Patches of smelt larvae were incorporated into the St. Lawrence estuarine water mass once every 24 h at night following high tide. The subsequent downstream transport of larvae in the St. Lawrence estuary appears slower than the advection of the water mass due to the tendency of larvae to remain deeper in the water column during ebb tides and to concentrate near the surface during flood tides. Smelt larvae are transported from the south shore to the partially mixed northern portion of the middle estuary which represents the principal zone of larval smelt accumulation. We propose that the vertical displacements exhibited by smelt larvae in combination with the two-layer circulation system of the northern middle estuary results in the retention of smelt larvae in this region.


1978 ◽  
Vol 35 (12) ◽  
pp. 1518-1531 ◽  
Author(s):  
Kenneth W. Able

The composition, distribution, and abundance of ichthyoplankton in the St. Lawrence estuary, including adjacent portions of the Saguenay River and the northwestern Gulf of St. Lawrence, were investigated during June–July 1973, June–October 1974, and May–September 1975. The eggs and larvae of 25 species from 14 families (principally osmerids, gadids, cottids, cyclopterids, and pleuronectids) were represented. The larvae, in every year, were almost exclusively forms with demersal eggs. Larvae were consistently more abundant in the upper estuary during every sampling period due to its use as a major spawning and nursery area for several species. Both eggs and larvae were most abundant in June and July. Probable spawning times, areas, and growth of larvae are discussed for selected species. Key words: ichthyoplankton, St. Lawrence estuary, distribution, larvae, osmerids, gadids, cottids, cyclopterids, pleuronectids


2020 ◽  
Vol 17 (2) ◽  
pp. 547-566 ◽  
Author(s):  
Louise Delaigue ◽  
Helmuth Thomas ◽  
Alfonso Mucci

Abstract. The Saguenay Fjord is a major tributary of the St. Lawrence Estuary and is strongly stratified. A 6–8 m wedge of brackish water typically overlies up to 270 m of seawater. Relative to the St. Lawrence River, the surface waters of the Saguenay Fjord are less alkaline and host higher dissolved organic carbon (DOC) concentrations. In view of the latter, surface waters of the fjord are expected to be a net source of CO2 to the atmosphere, as they partly originate from the flushing of organic-rich soil porewaters. Nonetheless, the CO2 dynamics in the fjord are modulated with the rising tide by the intrusion, at the surface, of brackish water from the Upper St. Lawrence Estuary, as well as an overflow of mixed seawater over the shallow sill from the Lower St. Lawrence Estuary. Using geochemical and isotopic tracers, in combination with an optimization multiparameter algorithm (OMP), we determined the relative contribution of known source waters to the water column in the Saguenay Fjord, including waters that originate from the Lower St. Lawrence Estuary and replenish the fjord's deep basins. These results, when included in a conservative mixing model and compared to field measurements, serve to identify the dominant factors, other than physical mixing, such as biological activity (photosynthesis, respiration) and gas exchange at the air–water interface, that impact the water properties (e.g., pH, pCO2) of the fjord. Results indicate that the fjord's surface waters are a net source of CO2 to the atmosphere during periods of high freshwater discharge (e.g., spring freshet), whereas they serve as a net sink of atmospheric CO2 when their practical salinity exceeds ∼5–10.


Sign in / Sign up

Export Citation Format

Share Document