scholarly journals Spatial variations in CO<sub>2</sub> fluxes in the Saguenay Fjord (Quebec, Canada) and results of a water mixing model

2020 ◽  
Vol 17 (2) ◽  
pp. 547-566 ◽  
Author(s):  
Louise Delaigue ◽  
Helmuth Thomas ◽  
Alfonso Mucci

Abstract. The Saguenay Fjord is a major tributary of the St. Lawrence Estuary and is strongly stratified. A 6–8 m wedge of brackish water typically overlies up to 270 m of seawater. Relative to the St. Lawrence River, the surface waters of the Saguenay Fjord are less alkaline and host higher dissolved organic carbon (DOC) concentrations. In view of the latter, surface waters of the fjord are expected to be a net source of CO2 to the atmosphere, as they partly originate from the flushing of organic-rich soil porewaters. Nonetheless, the CO2 dynamics in the fjord are modulated with the rising tide by the intrusion, at the surface, of brackish water from the Upper St. Lawrence Estuary, as well as an overflow of mixed seawater over the shallow sill from the Lower St. Lawrence Estuary. Using geochemical and isotopic tracers, in combination with an optimization multiparameter algorithm (OMP), we determined the relative contribution of known source waters to the water column in the Saguenay Fjord, including waters that originate from the Lower St. Lawrence Estuary and replenish the fjord's deep basins. These results, when included in a conservative mixing model and compared to field measurements, serve to identify the dominant factors, other than physical mixing, such as biological activity (photosynthesis, respiration) and gas exchange at the air–water interface, that impact the water properties (e.g., pH, pCO2) of the fjord. Results indicate that the fjord's surface waters are a net source of CO2 to the atmosphere during periods of high freshwater discharge (e.g., spring freshet), whereas they serve as a net sink of atmospheric CO2 when their practical salinity exceeds ∼5–10.

2019 ◽  
Author(s):  
Louise Delaigue ◽  
Helmuth Thomas ◽  
Alfonso Mucci

Abstract. The Saguenay Fjord is a major tributary of the St. Lawrence Estuary and is strongly stratified. A 6–8 m wedge of brackish water typically overlies up to 270 m of seawater. Relative to the St. Lawrence River, the surface waters of the Saguenay Fjord are less alkaline and host higher dissolved organic carbon (DOC) concentrations. In view of the latter, surface waters of the fjord are expected to be a net source of CO2 to the atmosphere, as they partly originate from the flushing of organic-rich soil porewaters. Nonetheless, the intrusion, at the surface, of brackish water from the upper estuary with the rising tide, as well as mixing of seawater, overflowing the sill from the lower estuary, modulate the CO2 dynamics in the fjord. Using geochemical and isotopic tracers, in combination with an optimization multiparameter algorithm (OMP), we determined the relative contribution of known source-waters to the water column in the Saguenay Fjord, including waters that originate from the Lower St. Lawrence Estuary and replenish the fjord’s deep basins. These results, when combined to a conservative mixing model and compared to field measurements, serve to identify the dominant factors, other than physical mixing, such as biological activity (photosynthesis, respiration) and gas exchange at the air-water interface, that impact the water properties (e.g., pH, pCO2) of the fjord. Results indicate that the fjord’s surface waters are a net source of CO2 to the atmosphere during periods of high freshwater discharge (e.g., spring freshet) whereas they serve as a net sink of atmospheric CO2 when their practical salinity exceeds ~ 5–10.


2018 ◽  
Vol 75 (7) ◽  
pp. 1128-1141 ◽  
Author(s):  
Alfonso Mucci ◽  
Maurice Levasseur ◽  
Yves Gratton ◽  
Chloé Martias ◽  
Michael Scarratt ◽  
...  

The head of the Laurentian Channel is a very dynamic region of exceptional biological richness. To evaluate the impact of freshwater discharge, tidal mixing, and biological activity on the pH of surface waters in this region, a suite of physical and chemical variables was measured throughout the water column over two tidal cycles. The relative contributions to the water column of the four source-water types that converge in this region were evaluated using an optimum multiparameter algorithm (OMP). Results of the OMP analysis were used to reconstruct the water column properties assuming conservative mixing, and the difference between the model properties and field measurements served to identify factors that control the pH of the surface waters. These surface waters are generally undersaturated with respect to aragonite, mostly due to the intrusion of waters from the Upper St. Lawrence Estuary and the Saguenay Fjord. The presence of a cold intermediate layer impedes the upwelling of the deeper, hypoxic, lower pH and aragonite-undersaturated waters of the Lower St. Lawrence Estuary to depths shallower than 50 m.


1978 ◽  
Vol 35 (3) ◽  
pp. 338-345 ◽  
Author(s):  
D. Cossa ◽  
S. A. Poulet

Trace metal contents (Mn, Zn, Pb, and Cd) of suspended particulate matter were measured in the upper St. Lawrence estuary and Saguenay fjord. In the estuary, elution of the trace metal fraction adsorbed on particles seems to be mostly responsible for the significant differences in concentrations observed at the freshwater–saltwater boundary. In the Saguenay fjord, particles from deep waters are enriched with trace metals, especially Mn, compared with those from surface waters. This enrichment is probably due to Mn oxidation and simultaneous scavenging of the other trace elements. High Pb and Cd levels in particles of surface waters of the fjord seem to depend mostly on their high affinity for the rich organic matter. Key words: trace elements, suspended matter, estuaries, manganese, zinc, lead, cadmium


1975 ◽  
Vol 32 (12) ◽  
pp. 2373-2377 ◽  
Author(s):  
Jean Claude Therriault ◽  
Guy Lacroix

A strong similarity is demonstrated in summertime physicochemical characteristics between the deep water of the Saguenay fjord and the surface water of the St. Lawrence estuary. Summer warming of the deep layer of the Saguenay is progressive from the mouth towards the head of the fjord. The mechanism proposed is the penetration of surface estuarine water over the shallow sill during the rising tide. The abnormally high chlorophyll values in this deep layer may be explained by the same advective mechanism.


1976 ◽  
Vol 33 (12) ◽  
pp. 2747-2757 ◽  
Author(s):  
Jean-Claude Therriault ◽  
Guy Lacroix

Tide-dependent variations of temperature, salinity, dissolved oxygen, phosphate, nitrate, and chlorophyll a support the existence of internal tides (longitudinal and transversal) in the St. Lawrence estuary. Vertical oscillations of the poorly oxygenated and nutrient-rich intermediate and deep waters of the estuary have been documented at the head of the Laurentian Channel, the region in which the internal tides are thought to be generated. Penetration of intermediate waters (high-nutrient and low-oxygen concentrations) beyond the Laurentian Channel associated with the internal tides and linked with an intense mixing process in the upstream region permits the nutrient enrichment of the surface waters and their eventual advection in the seaward direction.


1974 ◽  
Vol 52 (8) ◽  
pp. 1087-1090 ◽  
Author(s):  
David C. Judkins ◽  
Robert Wright

The arctic–subarctic mysids Boreomysis nobilis and Mysis litoralis were abundant in midwater trawl collections from the Saguenay fjord but were almost absent in collections from the confluent St. Lawrence estuary and Gulf of St. Lawrence. Collections from the estuary and Gulf contained boreal mysids more typical of the latitude. The presence of apparently isolated populations of B. nobilis and M. litoralis in the fjord is further evidence that it is an arctic enclave within a boreal region. The hypothesis that populations of arctic and subarctic species in the Saguenay fjord are relicts from a previous glacial period is questioned in view of the possibility of more recent faunal exchange between the Arctic and the fjord via intermediate arctic enclaves on the eastern Canadian coast.


1983 ◽  
Vol 40 (1) ◽  
pp. 52-60 ◽  
Author(s):  
J. Lebel ◽  
E. Pelletier ◽  
M. Bergeron ◽  
N. Belzile ◽  
G. Marquis

The large difference between the alkalinity of the fresh waters of the St. Lawrence River (1.475 mmol∙kg−1) and the Saguenay River (0.134 mmol∙kg−1) was used to locate the region on the St. Lawrence estuary which is under the influence of the Saguenay River. This method has the advantage over classical measurements such as salinity and temperature that it is independent of the upwelling of deep water in this region. Data was obtained in the St. Lawrence estuary near the mouth of the Saguenay fjord using a network of 33 stations at slack low tide and 23 stations at slack high tide. The results show that, at low tide, Saguenay water forms a plume which extends more than 10 km from the mouth of the fjord into the estuary. At high tide the plume is restricted to the surface layer as the Saguenay waters are pushed back into the fjord.


1979 ◽  
Vol 16 (2) ◽  
pp. 240-249 ◽  
Author(s):  
J. P. Chanut ◽  
S. A. Poulet

The spatial distribution of particle size spectra shows a two-layer stratification in May but reveals three-layer structure in September, both in the Saguenay fjord and in the adjacent waters of the St. Lawrence estuary, near the sill. In May, the particle size spectra in the surface layer show considerable variability whereas, in the bottom waters, they appear to be relatively homogeneous. In September, the deeper, more homogeneous water mass is less extensive. It is apparently eroded by diffusion and advection during summer months and becomes restricted to intermediate depths towards the head of the fjord. During the same period, a water mass with physical and particulate properties different from the upper layers occupies the bottom of the fjord. Principal component analysis shows that variations in particle size spectra are independent from one layer to another. Water masses with identical physical and particulate properties located in both sides of the sill illustrate the influence of the St. Lawrence estuary on the Saguenay fjord. These water masses, generally located below the sill depth, indicate the existence of powerful advective mechanisms in this region.


1978 ◽  
Vol 15 (6) ◽  
pp. 1002-1011 ◽  
Author(s):  
Bjørn Sundby ◽  
Douglas H. Loring

Analysis of major elements in suspended particulate matter from the Saguenay Fjord in May and September 1974 shows that the content of Si, Al, Ca, Mg, and K remain relatively constant in time and space, reflecting the constancy of the silicate mineralogy of the particulate matter. Large variations in time and space occur, however, in the content of Fe and Mn. High levels of Fe occur in particulate matter from near-bottom waters of the fjord during both time periods. Variations in the Fe/Al ratios indicate that Fe is enriched in the non-silicate fraction of the particulate matter (oxides, hydroxides, etc.) in the near-bottom waters, but not elsewhere. In contrast, Mn is enriched relative to both Al and Fe in particulate matter from intermediate depths, and varies in time and space. This is attributed to the in situ uptake of Mn from seawater and (or) the input of particles, already containing high levels of Mn, from the St. Lawrence Estuary.


1974 ◽  
Vol 1 (14) ◽  
pp. 130
Author(s):  
G. Drapeau ◽  
W. Harrison ◽  
W. Bien ◽  
P. Leinonen

This study examines the drifting, spreading and aging of small slicks of crude oil in the middle St. Lawrence Estuary. This region was chosen because it is well documented with field measurements, hydraulic scale models, and mathematical models; and also because it is becoming a strategic area for the development of supertanker ports for 300,000 and possibly 500,000 ton tankers. Two controlled releases of Venezuelan crude (370 and 800 litres) were made in November 1972, as ice began to form in the St. Lawrence Estuary. The experiments were supported by the Canada Centre for Remote Sensing which carried out extensive airborne monitoring. The results indicate that it is impossible either to recover or to disperse small spills of oil in this region of strong tidal currents. Models also predict slick motion poorly. The alternative is to construct slick-drift roses that will indicate areas of expected beaching and assist in deployment of oil-spill clean-up technology.


Sign in / Sign up

Export Citation Format

Share Document