Estimating Stock Composition in Mixed Stock Fisheries Using Morphometric, Meristic, and Electrophoretic Characteristics

1984 ◽  
Vol 41 (3) ◽  
pp. 400-408 ◽  
Author(s):  
D. A. Fournier ◽  
T. D. Beacham ◽  
B. E. Riddell ◽  
C. A. Busack

We describe a conditional maximum likelihood procedure for estimating stock composition in a mixed-stock fishery, provided that samples can be collected from the contributing stocks in isolation from each other and that characters exist that differ significantly between stocks. The procedure presented can use discrete (electrophoretic, meristic) or continuous (morphometric) data or any combination of these data. The procedure is tested by simulations and is used to estimate stock compositions of chum salmon (Oncorhynchus keta) sampled in a test fishery near Vancouver Island, B.C., in 1981. The estimated composition in the test fishery agreed closely with the results of previous tagging studies in the same area.


2008 ◽  
Vol 86 (9) ◽  
pp. 1002-1014 ◽  
Author(s):  
Terry D. Beacham ◽  
Brian Spilsted ◽  
Khai D. Le ◽  
Michael Wetklo

Variation at 14 microsatellite loci was surveyed in 205 populations of chum salmon ( Oncorhynchus keta (Walbaum in Artedi, 1792)) from British Columbia to determine population structure and the possible application of microsatellites to estimate stock composition of chum salmon in mixed-stock fisheries. The genetic differentiation index (FST) over all populations and loci was 0.016, with individual locus values ranging from 0.006 to 0.059. Sixteen regional stocks were defined in British Columbia for stock identification applications. Analysis of simulated fishery samples suggested that accurate and precise regional estimates of stock composition should be produced when the microsatellites were used to estimate stock compositions. The main stocks that constitute the October 2007 samples of migrating chum salmon through Johnstone Strait in southern British Columbia were Fraser River (45%–64%), southern British Columbia mainland (22%), and east coast Vancouver Island (13%–28%), within the range of those to be expected in samples from Johnstone Strait. Microsatellites have the ability to provide fine-scale resolution of stock composition in British Columbia coastal fisheries.



1998 ◽  
Vol 55 (7) ◽  
pp. 1748-1758 ◽  
Author(s):  
Kim T Scribner ◽  
Penelope A Crane ◽  
William J Spearman ◽  
Lisa W Seeb

Although the number of genetic markers available for fisheries research has steadily increased in recent years, there is limited information on their relative utility. In this study, we compared the preformance of different "classes" of genetic markers (mitochondrial DNA (mtDNA), nuclear DNA (nDNA), and allozymes) in terms of estimating levels and partitioning of genetic variation and of the relative accuracy and precision in estimating population allocations to mixed-stock fisheries. Individuals from eight populations of fall-run chum salmon (Oncorhynchus keta) from the Yukon River in Alaska and Canada were assayed at 25 loci. Significant differences in mitochondrial haplotype and nuclear allele frequencies were observed among five drainages. Populations from the U.S.-Canada border region were not clearly distinguishable based on multilocus allele frequencies. Although estimates of total genetic diversities were higher for the DNA loci (Ht = 0.592 and h = 0.647 for nDNA and mtDNA, respectively) compared with protein allozymes (Ht = 0.250), estimates of the extent of population differentiation were highly concordant across marker classes (mean theta = 0.010, 0.011, and 0.016 for allozymes, nDNA, and mtDNA, respectively). Simulations of mixed-stock fisheries composed of varying contributions of U.S. and Canadian populations revealed a consistent bias for overallocation of Canadian stocks when expected Canadian contributions varied from 0 to 40%, due primarily to misallocations among genetically similar border populations. No single marker class is superior for differentiating populations of this species at the spatial scale examined.



1985 ◽  
Vol 42 (3) ◽  
pp. 437-448 ◽  
Author(s):  
Terry D. Beacham ◽  
Ruth E. Withler ◽  
Allan P. Gould

We used electrophoresis to examine genetic variability of 33 chum salmon (Oncorhynchus keta) stocks in southern British Columbia and used differences in genotypic frequencies among these stocks for estimating stock compositions in a weekly fishery in upper Johnstone Strait. Seven polymorphic loci were used for stock identification. Chum salmon from the Fraser River, Bute and Toba inlets, Vancouver Island, and the southern Mainland had significantly different allelic frequencies, but there was also significant heterogeneity in allelic frequencies at some loci within each region. Allelic frequencies were generally stable over a 2-yr period in nine stocks for which consecutive annual sampling was conducted. There was no significant two-locus linkage disequilibrium for the chum salmon stocks surveyed. Cluster analysis indicated that Fraser River and Bute and Toba Inlet stocks were distinctive, but Vancouver Island and Mainland stocks were not. The timing and relative abundance of Fraser River chum salmon in upper Johnstone Strait as estimated by electrophoretic analysis was confirmed by an in-river test fishery in the Fraser River.





Author(s):  
Haruhisa Fukada ◽  
Naoshi Hiramatsu ◽  
Koichiro Gen ◽  
Akihiko Hara




Author(s):  
Shigenori Nobata ◽  
Takashi Kitagawa ◽  
Shouji Houki ◽  
Motohiro Ito ◽  
Yoshinori Aoki ◽  
...  


2020 ◽  
Vol 10 (2) ◽  
pp. 65
Author(s):  
Pushchina ◽  
Kapustyanov ◽  
Varaksin

The proliferation of neural stem cells (NSCs)/neuronal precursor cells (NPCs) and the occurrence of postmitotic neuroblasts in the mesencephalic tegmentum of intact juvenile chum salmon, Oncorhynchus keta, and at 3 days after a tegmental injury, were studied by immunohistochemical labeling. BrdU+ constitutive progenitor cells located both in the periventricular matrix zone and in deeper subventricular and parenchymal layers of the brain are revealed in the tegmentum of juvenile chum salmon. As a result of traumatic damage to the tegmentum, the proliferation of resident progenitor cells of the neuroepithelial type increases. Nestin-positive and vimentin-positive NPCs and granules located in the periventricular and subventricular matrix zones, as well as in the parenchymal regions of the tegmentum, are revealed in the mesencephalic tegmentum of juvenile chum salmon, which indicates a high level of constructive metabolism and constitutive neurogenesis. The expression of vimentin and nestin in the extracellular space, as well as additionally in the NSCs and NPCs of the neuroepithelial phenotype, which do not express nestin in the control animals, is enhanced during the traumatic process. As a result of the proliferation of such cells in the post-traumatic period, local Nes+ and Vim+ NPCs clusters are formed and become involved in the reparative response. Along with the primary traumatic lesion, which coincides with the injury zone, additional Nes+ and Vim+ secondary lesions are observed to form in the adjacent subventricular and parenchymal zones of the tegmentum. In the lateral tegmentum, the number of doublecortin-positive cells is higher compared to that in the medial tegmentum, which determines the different intensities and rates of neuronal differentiation in the sensory and motor regions of the tegmentum, respectively. In periventricular regions remote from the injury, the expression of doublecortin in single cells and their groups significantly increases compared to that in the damage zone.



Sign in / Sign up

Export Citation Format

Share Document