Interactions among sediments, organic matter, and microbial activity in the hyporheic zone of an intermittent stream

1999 ◽  
Vol 56 (3) ◽  
pp. 487-495 ◽  
Author(s):  
Mohamed Chafiq ◽  
Janine Gibert ◽  
Cécile Claret

Interactions between surface and subsurface water in intermittent streams are poorly understood. We predicted that surface discharge patterns would influence retention and transport of fine sediments and particulate organic matter in a first-order intermittent stream, which in turn would affect microbial activity at different depths in the sediment. We measured sediments, dissolved and particulate organic carbon, and microbial and bacterial biomass and activity at three depths (surface and 20 and 40 cm) over a period spanning low and high flows at five stations on an intermittent stream. Discharge influenced physicochemical and sediment characteristics at the upstream stations with coarse substratum. In the finer sediments of the lower reaches, an active hyporheic microbial assemblage primarily governed sediment and organic dynamics. With decreasing discharge and increasing retention of fine sediments and particulate organic carbon, greater microbial hydrolytic activity in bed-sediments occurred downstream. Dissolved oxygen, organic carbon, fine sediments, microbial biomass, hydrolytic activity, and bacterial biomass declined with depth, and changed over time, apparently in response to varying discharge. We conclude that discharge and substratum particle size may interact to control organic dynamics and hyporheic microbial activity in a 1st order stream.

Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 748 ◽  
Author(s):  
Peter Chifflard ◽  
Christina Fasching ◽  
Martin Reiss ◽  
Lukas Ditzel ◽  
Kyle S. Boodoo

Here for the first time, we analyze the concentration of dissolved (DOC) and particulate organic carbon (POC), as well as its optical properties (absorbance and fluorescence) from several proglacial streams across Iceland, the location of Europe’s largest non-polar ice cap. We found high spatial variability of DOC concentrations and dissolved organic matter (DOM) composition during peak melt, sampling 13 proglacial streams draining the 5 main Icelandic glaciers. Although glacial-derived organic matter (OM) was dominated by proteinaceous florescence, organic matter composition was variable among glaciers, often exhibiting relatively higher aromatic content and increased humification (based on absorbance and fluorescence measurements) closer to the glacier terminus, modulated by the presence of glacial lakes. Additional sampling locations the in flow path of the river Hvitá revealed that while POC concentrations decreased downstream, DOC concentrations and the autochthonous fraction of OM increased, suggesting the reworking of the organic carbon by microbial communities, with likely implications for downstream ecosystems as glaciers continue to melt. Based on our measured DOC concentrations ranging from 0.11 mg·L−1 to 0.94 mg·L−1, we estimate a potential annual carbon release of 0.008 ± 0.002 Tg·C·yr−1 from Icelandic glaciers. This non-conservative first estimate serves to highlight the potentially significant contribution of Icelandic pro-glacial streams to the global carbon cycle and the need for the quantification and determination of the spatio-temporal variation of DOC and POC fluxes and their respective drivers, particularly in light of increased rates of melting due to recent trends in climatic warming.


1989 ◽  
Vol 69 (1) ◽  
pp. 39-47 ◽  
Author(s):  
A. NDAYEGAMIYE ◽  
D. CÔTÉ

Chemical and biological properties were evaluated in 1987 on an acidic silty loam soil following a long-term field study established in 1978 and cultivated with silage corn. Treatments included a control, solid cattle manure (20, 40 and 60 Mg ha−1 FYM) and pig slurry (60, 120 m3 ha−1 SLU) applied every 2 yr and annually, respectively. No fertilizer was applied. The results of this study have shown that neither treatment significantly affected soil pH values, total-N contents and C:N ratios compared to the control. The cation exchange capacity (CEC) of the soil was significantly higher with FYM treatment than with control or SLU application. The highest rates of FYM and SLU have also increased (P < 0.05) soil organic carbon, microbial activity and potentially mineralizable nitrogen. The soil microflora populations (bacteria, fungi, actinomycetes, ammonifiers and nitrifiers) were greatly improved by both treatments. There were no significant differences in organic matter content or the relative amount of humic and fulvic acids between FYM and SLU plots. In spite of these results, FYM application (40 and 60 Mg ha−1) did affect more significantly the distribution of organic carbon in HA and the E4/E6 quotients than SLU additions. Humic acids extracted from SLU amended soils had a lower C content and lower E4/E6 ratios than humic acids from FYM soils. Long-term SLU application did not contribute to decreased organic matter content, CEC and humic acids yield, probably because of optimal organic residues returned to the soil by the corn crops. The FYM application generally improved soil chemical and biological properties. For a sustainable soil productivity, long-term SLU application should then be avoided in rotation in which small amounts of plant residues are returned, especially on soils with low organic matter contents. Key words: Organic matter, microbial activity, nitrogen mineralization potential, CEC, solid cattle manure, pig slurry


2019 ◽  
Author(s):  
Taiki Mori ◽  
Xiankai Lu ◽  
Cong Wang ◽  
Qinggong Mao ◽  
Senhao Wang ◽  
...  

AbstractThe prevailing paradigm for soil microbial activity in tropical forests is that microbial activity is limited by phosphorus (P) availability. Thus, exogenous P addition should increase rates of organic matter decomposition. Studies have also confirmed that soil respiration is accelerated when P is added experimentally. However, we hypothesize that the increased rates of soil microbial respiration could be due to the release of organic material from the surface of soil minerals when P is added, because P is more successful at binding to soil particles than organic compounds. In this study, we demonstrate that P addition to soil is associated with significantly higher dissolved organic carbon (DOC) content in a tropical evergreen forest in southern China. Our results indicate that P fertilization stimulated soil respiration but suppressed litter decomposition. Results from a second sorption experiment revealed that the recovery ratio of added DOC in the soil of a plot fertilized with P for 9 years was larger than the ratio in the soil of a non-fertilized plot, although the difference was small. We also conducted a literature review on the effects of P fertilization on the decomposition rates of litter and soil organic matter at our study site. Previous studies have consistently reported that P addition led to higher response ratios of soil microbial respiration than litter decomposition. Therefore, experiments based on P addition cannot be used to test whether microbial activity is P-limited in tropical forest soils, because organic carbon desorption occurs when P is added. Our findings suggest that the prevailing paradigm on the relationship between P and microbial activity in tropical forest soils should be re-evaluated.


Author(s):  
Thomas S. Bianchi ◽  
Elizabeth A. Canuel

This chapter discusses proteins, which make up approximately 50% of organic matter and contain about 85% of the organic nitrogen in marine organisms. Peptides and proteins comprise an important fraction of the particulate organic carbon (13–37%) and particulate organic nitrogen (30–81%), as well as dissolved organic nitrogen (5–20%) and dissolved organic carbon (3–4%) in oceanic and coastal waters. In sediments, proteins account for approximately 7 to 25% of organic carbon and an estimated 30 to 90% of total nitrogen. Amino acids are the basic building blocks of proteins. This class of compounds is essential to all organisms and represents one of the most important components in the organic nitrogen cycle. Amino acids represent one of the most labile pools of organic carbon and nitrogen.


2021 ◽  
Author(s):  
Quentin Devresse ◽  
Kevin W Becker ◽  
Anja Engel

&lt;p&gt;Mesoscale eddies formed in Eastern boundary upwelling systems are elementary components of ocean circulation and play important roles in the offshore transport of organic carbon and nutrients. Yet, most of our knowledge about this lateral transport and its influence on biogeochemical cycles relies on modelling studies and satellite observations, while in situ measurements of biogeochemical parameters are scarce. For example, little is known about the effects of mesoscale eddies on organic carbon distribution, microbial activity, and organic matter (OM) turnover in the open oligotrophic ocean. To address this gap, we investigated the horizontal and vertical variability of phytoplankton and bacterial activity as well as dissolved organic carbon along a zonal corridor of the westward propagation of eddies between the Cape Verde Islands and Mauretania in the Eastern Tropical North Atlantic (ETNA). We additionally collected samples from a cyclonic eddy along this transect at high spatial resolution. Our results indicate a strong impact of cyclonic eddies on both microbial abundance and metabolic activity in the epipelagic layer (0&amp;#8211;200 m). Generally, all determined parameters (bacterial abundance, heterotrophic respiration rates, bacterial biomass production, bacterial growth efficiency, bacterial carbon demand and net primary production) were higher in the eddy than in the stations along the meridional transect. Along the transect, microbial biomass and activity rates were gradually decreasing from the coast to the open ocean. We further observed high variability of biogeochemical parameters within the eddy with elevates microbial abundances as well as process rates in the south-western periphery. This can be explained by the rotational flow of the cyclonic eddy, which perturbs local OM and nutrient distribution via azimuthal advection. The local positive anomaly of microbial activity in the cyclonic eddy compared to all other stations including the near coast ones results from eddy pumping of nutrient into the epipelagic layer that promotes growth of phytoplankton. Overall, our study supports that cyclonic eddies are important vehicles for the transport of fresh OM that fuel heterotrophic activity the open ocean, highlighting the coupling between productive EBUS and the adjacent oligotrophic ETNA.&lt;/p&gt;


2012 ◽  
Vol 9 (6) ◽  
pp. 2045-2062 ◽  
Author(s):  
S. Bouillon ◽  
A. Yambélé ◽  
R. G. M. Spencer ◽  
D. P. Gillikin ◽  
P. J. Hernes ◽  
...  

Abstract. The Oubangui is a major tributary of the Congo River, draining an area of ~500 000 km2 mainly consisting of wooded savannahs. Here, we report results of a one year long, 2-weekly sampling campaign in Bangui (Central African Republic) since March 2010 for a suite of physico-chemical and biogeochemical characteristics, including total suspended matter (TSM), bulk concentration and stable isotope composition of particulate organic carbon (POC and δ13CPOC), particulate nitrogen (PN and δ15NPN), dissolved organic carbon (DOC and δ13CDOC), dissolved inorganic carbon (DIC and δ13CDIC), dissolved greenhouse gases (CO2, CH4 and N2O), and dissolved lignin composition. δ13C signatures of both POC and DOC showed strong seasonal variations (−30.6 to −25.8‰, and −31.8 to −27.1‰, respectively), but their different timing indicates that the origins of POC and DOC may vary strongly over the hydrograph and are largely uncoupled, differing up to 6‰ in δ13C signatures. Dissolved lignin characteristics (carbon-normalised yields, cinnamyl:vanillyl phenol ratios, and vanillic acid to vanillin ratios) showed marked differences between high and low discharge conditions, consistent with major seasonal variations in the sources of dissolved organic matter. We observed a strong seasonality in pCO2, ranging between 470 ± 203 ppm for Q < 1000 m3 s−1 (n=10) to a maximum of 3750 ppm during the first stage of the rising discharge. The low POC/PN ratios, high %POC and low and variable δ13CPOC signatures during low flow conditions suggest that the majority of the POC pool during this period consists of in situ produced phytoplankton, consistent with concurrent pCO2 (partial pressure of CO2) values only slightly above and, occasionally, below atmospheric equilibrium. Water-atmosphere CO2 fluxes estimated using two independent approaches averaged 105 and 204 g C m−2 yr−1, i.e. more than an order of magnitude lower than current estimates for large tropical rivers globally. Although tropical rivers are often assumed to show much higher CO2 effluxes compared to temperate systems, we show that in situ production may be high enough to dominate the particulate organic carbon pool, and lower pCO2 values to near equilibrium values during low discharge conditions. The total annual flux of TSM, POC, PN, DOC and DIC are 2.33 Tg yr−1, 0.14 Tg C yr−1, 0.014 Tg N yr−1, 0.70 Tg C yr−1, and 0.49 Tg C yr−1, respectively. While our TSM and POC fluxes are similar to previous estimates for the Oubangui, DOC fluxes were ~30% higher and bicarbonate fluxes were ~35% lower than previous reports. DIC represented 58% of the total annual C flux, and under the assumptions that carbonate weathering represents 25% of the DIC flux and that CO2 from respiration drives chemical weathering, this flux is equivalent to ~50% of terrestrial-derived riverine C transport.


1981 ◽  
Vol 32 (2) ◽  
pp. 245 ◽  
Author(s):  
DJW Moriarty ◽  
MC Barclay

The food of seven species of penaeid prawns from the Gulf of Carpentaria consists predominantly of Foraminifera, small molluscs, crustaceans and polychaetes. Measurements of organic and inorganic carbon, organic nitrogen and bacterial biomass were made. Foregut contents of adult prawns contained between 72 and 223 mg organic carbon/g dry wt. Protein constituted between 43 and 64% of the organic matter. Approximate assimilation efficiencies of food in prawns caught in the gulf, determined for four species, varied from 48 to 77% of organic carbon and from 42 to 77% of organic nitrogen. The food of juvenile Penaeus merguiensis was examined for two growing seasons. In the 1976-1977 season the foregut contents contained a mean of 41 mg organic nitrogen /g dry wt and 181 mg organic carbon /g dry wt. In the 1977-1978 season, significantly lower proportions of organic nitrogen and carbon were eaten, viz, 21 mg organic nitrogenlg dry wt and 101 mg organic carbon /g dry wt. Improved assay procedures for muramic acid have shown that bacteria are less important in the food of prawns than previously reported. Bacteria constituted less than 2% of the organic matter in the adults of all species, but in many juvenile P. merguiensis bacteria were more important, constituting up to 14% of organic matter.


1982 ◽  
Vol 33 (2) ◽  
pp. 255 ◽  
Author(s):  
DJW Moriarty

Organic carbon and nitrogen and bacterial biomass were measured in the sediments and gut contents of H. atra and S. chloronotuson the Great Barrier Reef. Organic carbon averaged from 3.4 to 4.7 mg g-1, organic nitrogen from 0.20 to 0.31 mg g-1 and muramic acid from 1.4 to 3.3�g g-1 dry weight of surface sandy sediments. Bacterial biomass, determined by muramic acid measurements, averaged 3-8% of organic carbon in the sediments; blue-green algae accounted for 3-7% of muramic acid. Significantly higher values of organic carbon and nitrogen and muramic acid were found in foregut contents of the holothurians, indicating selective feeding on organically rich components of the sediment. Carbon values were 16-34% higher in the foregut than in the sediment. nitrogen values 35-111% higher and muramic acid values 33-300% higher. These values indicate that bacteria and nitrogenous components of the organic matter were selectively eaten. Values for organic carbon and nitrogen and muramic acid were generally lower in the hindgut than in the foregut, due to digestion and assimilation. Assimilation efficiencies averaged 30% for organic carbon, 40% for organic nitrogen and 30-40% for muramic acid (bacteria). Detritus (non-living matter) probably constituted 60-80% of the organic matter in the sediment and thus the food of the holothurians.


2013 ◽  
Vol 663 ◽  
pp. 1058-1063 ◽  
Author(s):  
Xiao Li Liu ◽  
Shou Ye Yang ◽  
Wen Rui Huang ◽  
Lin Lu Li ◽  
Chen Zeng ◽  
...  

The suspended matter samples collected about 2 times every month in Datong of Yangtze River from May to November 2010 were used for determination of grain size and particulate organic carbon (POC) component. The results indicated that the size composition and organic carbon concentrations of Datong showed obvious seasonal characteristics. The median grain size of the suspended particulate matter ranged from 5.8 to 7.8Φ, decreased in summer (July to September) and increased in autumn (October to November). The POC% of the suspended particulate matter ranged from 0.87% to 1.18%, and was lower in summer, because high sediment discharge had dilution effect for organic carbon. The increase of the turbidity of water reduced the production capacity, and the organic matter correspondingly decreased. POC% decreased with the reduction of median grain size, which suggested that organic matter into the river in summer is mainly organic debris, but not mainly absorbed by the fine particles of clay. CaCO3 content ranged 3.7% to 7.6% and was higher in summer, which reflected the increased source contribution of the upper stream. It decreased in autumn, which reflected the increased source contribution of the middle and lower stream. Since the impoundment of the Three Gorges Reservoir, POC% in Datong were significantly higher than before, which showed the rise of fine particulate matter component and its stronger adsorption of organic matter. The Three Gorges Dam had significant influence on the grain size and organic composition of suspended matter of theYangtze River into the sea. Its potential environmental impact of bio-geochemical effects deserves more research attention.


Sign in / Sign up

Export Citation Format

Share Document