Comparative genomic analysis of sequences sampled from a small region on soybean (Glycine max) molecular linkage group G

Genome ◽  
2002 ◽  
Vol 45 (4) ◽  
pp. 634-645 ◽  
Author(s):  
Dawn Foster-Hartnett ◽  
Joann Mudge ◽  
Dana Larsen ◽  
Dariush Danesh ◽  
Huihuang Yan ◽  
...  

Eight DNA markers spanning an interval of approximately 10 centimorgans (cM) on soybean (Glycine max) molecular linkage group G (MLG-G) were used to identify bacterial artificial chromosome (BAC) clones. Twenty-eight BAC clones in eight distinct contiguous groups (contigs) were isolated from this genome region, along with 59 BAC clones on 17 contigs homoeologous to those on MLG-G. BAC clones in four of the MLG-G contigs were also digested to produce subclones and detailed physical maps. All of the BAC-ends were sequenced, as were the subclones, to estimate proportions in different sequence categories, compare similarities among homoeologs, and explore microsynteny with Arabidopsis. Homoeologous BAC contigs were enriched in repetitive sequences compared with those on MLG-G or the soybean genome as a whole. Fingerprint and cross-hybridization comparisons between MLG-G and homoeologous contigs revealed cases of highly similar physical organization between soybean duplicates, as did DNA sequence comparisons. Twenty-seven out of 78 total sequences on soybean MLG-G showed significant similarity to Arabidopsis. The homologs mapped to six compact genome segments in Arabidopsis, with the longest containing seven homologs spanning two million base pairs. These results extend previous observations of large-scale duplication and selective gene loss in Arabidopsis, suggesting that networks of conserved synteny between Arabidopsis and other angiosperm families can stretch over long physical distances.Key words: Arabidopsis thaliana, bacterial artificial chromosomes, Glycine max, microsynteny.

Genome ◽  
2004 ◽  
Vol 47 (1) ◽  
pp. 141-155 ◽  
Author(s):  
H H Yan ◽  
J Mudge ◽  
D-J Kim ◽  
R C Shoemaker ◽  
D R Cook ◽  
...  

To gain insight into genomic relationships between soybean (Glycine max) and Medicago truncatula, eight groups of bacterial artificial chromosome (BAC) contigs, together spanning 2.60 million base pairs (Mb) in G. max and 1.56 Mb in M. truncatula, were compared through high-resolution physical mapping combined with sequence and hybridization analysis of low-copy BAC ends. Cross-hybridization among G. max and M. truncatula contigs uncovered microsynteny in six of the contig groups and extensive microsynteny in three. Between G. max homoeologous (within genome duplicate) contigs, 85% of coding and 75% of noncoding sequences were conserved at the level of cross-hybridization. By contrast, only 29% of sequences were conserved between G. max and M. truncatula, and some kilobase-scale rearrangements were also observed. Detailed restriction maps were constructed for 11 contigs from the three highly microsyntenic groups, and these maps suggested that sequence order was highly conserved between G. max duplicates and generally conserved between G. max and M. truncatula. One instance of homoeologous BAC contigs in M. truncatula was also observed and examined in detail. A sequence similarity search against the Arabidopsis thaliana genome sequence identified up to three microsyntenic regions in A. thaliana for each of two of the legume BAC contig groups. Together, these results confirm previous predictions of one recent genome-wide duplication in G. max and suggest that M. truncatula also experienced ancient large-scale genome duplications.Key words: Glycine max, Medicago truncatula, Arabidopsis thaliana, conserved microsynteny, genome duplication.


Genome ◽  
2004 ◽  
Vol 47 (2) ◽  
pp. 239-245 ◽  
Author(s):  
Yaping Qian ◽  
Li Jin ◽  
Bing Su

The large-insert genomic DNA library is a critical resource for genome-wide genetic dissection of target species. We constructed a high-redundancy bacterial artificial chromosome (BAC) library of a New World monkey species, the black-handed spider monkey (Ateles geoffroyi). A total of 193 152 BAC clones were generated in this library. The average insert size of the BAC clones was estimated to be 184.6 kb with the small inserts (50-100 kb) accounting for less than 3% and the non-recombinant clones only 1.2%. Assuming a similar genome size with humans, the spider monkey BAC library has about 11× genome coverage. In addition, by end sequencing of randomly selected BAC clones, we generated 367 sequence tags for the library. When blasted against human genome, they showed a good correlation between the number of hit clones and the size of the chromosomes, an indication of unbiased chromosomal distribution of the library. This black-handed spider monkey BAC library would serve as a valuable resource in comparative genomic study and large-scale genome sequencing of nonhuman primates.Key words: black-handed spider monkeys, Ateles geoffroyi, BAC library.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Etienne De Braekeleer ◽  
Nathalie Douet-Guilbert ◽  
Audrey Basinko ◽  
Frédéric Morel ◽  
Marie-Josée Le Bris ◽  
...  

The development of the bacterial artificial chromosome (BAC) system was driven in part by the human genome project in order to construct genomic DNA libraries and physical maps for genomic sequencing. The availability of BAC clones has become a valuable tool for identifying cancer genes. We report here our experience in identifying genes located at breakpoints of chromosomal rearrangements and in defining the size and boundaries of deletions in hematological diseases. The methodology used in our laboratory consists of a three-step approach using conventional cytogenetics followed by FISH with commercial probes, then BAC clones. One limitation to the BAC system is that it can only accommodate inserts of up to 300 kb. As a consequence, analyzing the extent of deletions requires a large amount of material. Array comparative genomic hybridization (array-CGH) using a BAC/PAC system can be an alternative. However, this technique has limitations also, and it cannot be used to identify candidate genes at breakpoints of chromosomal rearrangements such as translocations, insertions, and inversions.


Genome ◽  
2004 ◽  
Vol 47 (4) ◽  
pp. 764-768 ◽  
Author(s):  
Janice Pagel ◽  
Jason G Walling ◽  
Nevin D Young ◽  
Randy C Shoemaker ◽  
Scott A Jackson

Soybean (Glycine max L. Merr.) is presumed to be an ancient polyploid based on chromosome number and multiple RFLP fragments in genetic mapping. Direct cytogenetic observation of duplicated regions within the soybean genome has not heretofore been reported. Employing flourescence in situ hybridization (FISH) of genetically anchored bacterial artificial chromosomes (BACs) in soybean, we were able to observe that the distal ends of molecular linkage group E had duplicated regions on linkage groups A2 and B2. Further, using fiber-FISH, it was possible to measure the molecular size and organization of one of the duplicated regions. As FISH did not require repetitive DNA for blocking fluorescence signals, we assume that the 200-kb genome region is relatively low in repetitive sequences. This observation, along with the observation that the BACs are located in distal euchromatin regions, has implications for genome structure/evolution and the approach used to sequence the soybean genome.Key words: soybean, genome evolution, FISH, chromosomes, physical mapping.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Jihua Wang ◽  
Shiqiang Xu ◽  
Yu Mei ◽  
Shike Cai ◽  
Yan Gu ◽  
...  

AbstractMorinda officinalis is a well-known medicinal and edible plant that is widely cultivated in the Lingnan region of southern China. Its dried roots (called bajitian in traditional Chinese medicine) are broadly used to treat various diseases, such as impotence and rheumatism. Here, we report a high-quality chromosome-scale genome assembly of M. officinalis using Nanopore single-molecule sequencing and Hi-C technology. The assembled genome size was 484.85 Mb with a scaffold N50 of 40.97 Mb, and 90.77% of the assembled sequences were anchored on eleven pseudochromosomes. The genome includes 27,698 protein-coding genes, and most of the assemblies are repetitive sequences. Genome evolution analysis revealed that M. officinalis underwent core eudicot γ genome triplication events but no recent whole-genome duplication (WGD). Likewise, comparative genomic analysis showed no large-scale structural variation after species divergence between M. officinalis and Coffea canephora. Moreover, gene family analysis indicated that gene families associated with plant–pathogen interactions and sugar metabolism were significantly expanded in M. officinalis. Furthermore, we identified many candidate genes involved in the biosynthesis of major active components such as anthraquinones, iridoids and polysaccharides. In addition, we also found that the DHQS, GGPPS, TPS-Clin, TPS04, sacA, and UGDH gene families—which include the critical genes for active component biosynthesis—were expanded in M. officinalis. This study provides a valuable resource for understanding M. officinalis genome evolution and active component biosynthesis. This work will facilitate genetic improvement and molecular breeding of this commercially important plant.


Genetics ◽  
2000 ◽  
Vol 156 (2) ◽  
pp. 833-838 ◽  
Author(s):  
Scott A Jackson ◽  
Zhukuan Cheng ◽  
Ming Li Wang ◽  
Howard M Goodman ◽  
Jiming Jiang

Abstract Comparative genome studies are important contributors to our understanding of genome evolution. Most comparative genome studies in plants have been based on genetic mapping of homologous DNA loci in different genomes. Large-scale comparative physical mapping has been hindered by the lack of efficient and affordable techniques. We report here the adaptation of fluorescence in situ hybridization (FISH) techniques for comparative physical mapping between Arabidopsis thaliana and Brassica rapa. A set of six bacterial artificial chromosomes (BACs) representing a 431-kb contiguous region of chromosome 2 of A. thaliana was mapped on both chromosomes and DNA fibers of B. rapa. This DNA fragment has a single location in the A. thaliana genome, but hybridized to four to six B. rapa chromosomes, indicating multiple duplications in the B. rapa genome. The sizes of the fiber-FISH signals from the same BACs were not longer in B. rapa than those in A. thaliana, suggesting that this genomic region is duplicated but not expanded in the B. rapa genome. The comparative fiber-FISH mapping results support that chromosomal duplications, rather than regional expansion due to accumulation of repetitive sequences in the intergenic regions, played the major role in the evolution of the B. rapa genome.


Genome ◽  
2004 ◽  
Vol 47 (1) ◽  
pp. 190-198 ◽  
Author(s):  
K K Kato ◽  
R G Palmer

Three lethal-yellow mutants have been identified in soybean (Glycine max (L.) Merr.), and assigned genetic type collection numbers T218H, T225H, and T362H. Previous genetic evaluation of T362H indicated allelism with T218H and T225H and duplicate-factor inheritance. Our objectives were to confirm the inheritance and allelism of T218H and T225H and to molecularly map the locus and (or) loci conditioning the lethal-yellow phenotype. The inheritance of T218H and T225H was 3 green : 1 lethal yellow in their original parental source germplasm of Glycine max 'Illini' and Glycine max 'Lincoln', respectively. In crosses to unrelated germplasm, a 15 green : 1 lethal yellow was observed. Allelism tests indicated that T218H and T225H were allelic. The molecular mapping population was Glycine max 'Minsoy' × T225H and simple sequence repeat (SSR) markers were used. The first locus, designated y18_1, was located on soybean molecular linkage group B2, between SSR markers Satt474 and Satt534, and linked to each by 4.4 and 13.4 cM, respectively. The second locus, designated y18_2, was located on soybean molecular linkage group D2, between SSR markers Satt543 and Sat_001, and linked to each by 2.2 and 4.4 cM, respectively.Key words: duplicate gene, Glycine max, homoeologous genomic segment, genome evolution, lethal-yellow mutant.


Genomics ◽  
1995 ◽  
Vol 26 (2) ◽  
pp. 178-191 ◽  
Author(s):  
Jing Liu ◽  
Vincent P. Stanton ◽  
T.Mary Fujiwara ◽  
Jian-Xue Wang ◽  
Rebeca Rezonzew ◽  
...  

Genetics ◽  
2002 ◽  
Vol 161 (4) ◽  
pp. 1661-1672 ◽  
Author(s):  
Andrea Pedrosa ◽  
Niels Sandal ◽  
Jens Stougaard ◽  
Dieter Schweizer ◽  
Andreas Bachmair

AbstractLotus japonicus is a model plant for the legume family. To facilitate map-based cloning approaches and genome analysis, we performed an extensive characterization of the chromosome complement of the species. A detailed karyotype of L. japonicus Gifu was built and plasmid and BAC clones, corresponding to genetically mapped markers (see the accompanying article by Sandal  et al. 2002, this issue), were used for FISH to correlate genetic and chromosomal maps. Hybridization of DNA clones from 32 different genomic regions enabled the assignment of linkage groups to chromosomes, the comparison between genetic and physical distances throughout the genome, and the partial characterization of different repetitive sequences, including telomeric and centromeric repeats. Additional analysis of L. filicaulis and its F1 hybrid with L. japonicus demonstrated the occurrence of inversions between these closely related species, suggesting that these chromosome rearrangements are early events in speciation of this group.


Genetics ◽  
2009 ◽  
Vol 183 (3) ◽  
pp. 1165-1173 ◽  
Author(s):  
Shu Kondo ◽  
Matthew Booker ◽  
Norbert Perrimon

RNAi-mediated gene knockdown in Drosophila melanogaster is a powerful method to analyze loss-of-function phenotypes both in cell culture and in vivo. However, it has also become clear that false positives caused by off-target effects are prevalent, requiring careful validation of RNAi-induced phenotypes. The most rigorous proof that an RNAi-induced phenotype is due to loss of its intended target is to rescue the phenotype by a transgene impervious to RNAi. For large-scale validations in the mouse and Caenorhabditis elegans, this has been accomplished by using bacterial artificial chromosomes (BACs) of related species. However, in Drosophila, this approach is not feasible because transformation of large BACs is inefficient. We have therefore developed a general RNAi rescue approach for Drosophila that employs Cre/loxP-mediated recombination to rapidly retrofit existing fosmid clones into rescue constructs. Retrofitted fosmid clones carry a selection marker and a phiC31 attB site, which facilitates the production of transgenic animals. Here, we describe our approach and demonstrate proof-of-principle experiments showing that D. pseudoobscura fosmids can successfully rescue RNAi-induced phenotypes in D. melanogaster, both in cell culture and in vivo. Altogether, the tools and method that we have developed provide a gold standard for validation of Drosophila RNAi experiments.


Sign in / Sign up

Export Citation Format

Share Document