Comparative analysis of QTLs affecting plant height and flowering among closely-related diploid and polyploid genomes

Genome ◽  
2002 ◽  
Vol 45 (5) ◽  
pp. 794-803 ◽  
Author(s):  
Ray Ming ◽  
Terrye A. Del Monte ◽  
Eduardo Hernandez ◽  
Paul H Moore ◽  
James E Irvine ◽  
...  

Quantitative trait loci (QTLs) affecting plant height and flowering were studied in the two Saccharum species from which modern sugarcane cultivars are derived. Two segregating populations derived from interspecific crosses between Saccharum officinarum and Saccharum spontaneum were genotyped with 735 DNA markers. Among the 65 significant associations found between these two traits and DNA markers, 35 of the loci were linked to sugarcane genetic maps and 30 were unlinked DNA markers. Twenty-one of the 35 mapped QTLs were clustered in eight genomic regions of six sugarcane homologous groups. Some of these could be divergent alleles at homologous loci, making the actual number of genes implicated in these traits much less than 35. Four QTL clusters controlling plant height in sugarcane corresponded closely to four of the six plant-height QTLs previously mapped in sorghum. One QTL controlling flowering in sugarcane corresponded to one of three flowering QTLs mapped in sorghum. The correspondence in locations of QTLs affecting plant height and flowering in sugarcane and sorghum reinforce the notion that the simple sorghum genome is a valuable "template" for molecular dissection of the much more complex sugarcane genome.Key words: DNA markers, genetic map, quantitative trait loci, Saccharum.

2020 ◽  
Vol 3 (2) ◽  
pp. 28 ◽  
Author(s):  
Frank M. You ◽  
Sylvie Cloutier

Quantitative trait loci (QTL) are genomic regions associated with phenotype variation of quantitative traits. To date, a total of 313 QTL for 31 quantitative traits have been reported in 14 studies on flax. Of these, 200 QTL from 12 studies were identified based on genetic maps, the scaffold sequences, or the pre-released chromosome-scale pseudomolecules. Molecular markers for QTL identification differed across studies but the most used ones were simple sequence repeats (SSRs) or single nucleotide polymorphisms (SNPs). To uniquely map the SSR and SNP markers from different references onto the recently released chromosome-scale pseudomolecules, methods with several scripts and database files were developed to locate PCR- and SNP-based markers onto the same reference, co-locate QTL, and scan genome-wide candidate genes. Using these methods, 195 out of 200 QTL were successfully sorted onto the 15 flax chromosomes and grouped into 133 co-located QTL clusters; the candidate genes that co-located with these QTL clusters were also predicted. The methods and tools presented in this article facilitate marker re-mapping to a new reference, genome-wide QTL analysis, candidate gene scanning, and breeding applications in flax and other crops.


Author(s):  
Frank M. You ◽  
Sylvie Cloutier

Quantitative trait loci (QTL) are genomic regions associated with phenotype variation of quantitative traits in a population. To date, a total of 267 QTL for 29 quantitative traits have been reported in 13 studies on flax. Of these, 200 QTL from 12 studies were identified based on genetic maps, scaffold sequences, or pre-released chromosome-scale pseudomolecules. Molecular markers for QTL identification differed across studies but were mainly based on simple sequence repeat (SSR) or single nucleotide polymorphism (SNP) markers. This article provides methods with software tools and database files to uniquely map SSR and SNP markers from different references onto the recently released chromosome-scale pseudomolecules. Using these methods, 195 QTL were successfully sorted onto the 15 flax chromosomes and grouped into 133 co-located QTL clusters. Mapping of QTL from different studies to the same reference enables comparisons and facilitates genome-wide QTL analysis, candidate gene scanning, and breeding applications.


2021 ◽  
Vol 12 ◽  
Author(s):  
Ana Pina ◽  
Patricia Irisarri ◽  
Pilar Errea ◽  
Tetyana Zhebentyayeva

Graft incompatibility (GI) between the most popular Prunus rootstocks and apricot cultivars is one of the major problems for rootstock usage and improvement. Failure in producing long-leaving healthy grafts greatly affects the range of available Prunus rootstocks for apricot cultivation. Despite recent advances related to the molecular mechanisms of a graft-union formation between rootstock and scion, information on genetic control of this trait in woody plants is essentially missing because of a lack of hybrid crosses, segregating for the trait. In this study, we have employed the next-generation sequencing technology to generate the single-nucleotide polymorphism (SNP) markers and construct parental linkage maps for an apricot F1 population “Moniqui (Mo)” × “Paviot (Pa)” segregating for ability to form successful grafts with universal Prunus rootstock “Marianna 2624”. To localize genomic regions associated with this trait, we genotyped 138 individuals from the “Mo × Pa” cross and constructed medium-saturated genetic maps. The female “Mo” and male “Pa” maps were composed of 557 and 501 SNPs and organized in eight linkage groups that covered 780.2 and 690.4 cM of genetic distance, respectively. Parental maps were aligned to the Prunus persica v2.0 genome and revealed a high colinearity with the Prunus reference map. Two-year phenotypic data for characters associated with unsuccessful grafting such as necrotic line (NL), bark and wood discontinuities (BD and WD), and an overall estimate of graft (in)compatibility (GI) were collected for mapping quantitative trait loci (QTLs) on both parental maps. On the map of the graft-compatible parent “Pa”, two genomic regions on LG5 (44.9–60.8 cM) and LG8 (33.2–39.2 cM) were associated with graft (in)compatibility characters at different significance level, depending on phenotypic dataset. Of these, the LG8 QTL interval was most consistent between the years and supported by two significant and two putative QTLs. To our best knowledge, this is the first report on QTLs for graft (in)compatibility in woody plants. Results of this work will provide a valuable genomic resource for apricot breeding programs and facilitate future efforts focused on candidate genes discovery for graft (in)compatibility in apricot and other Prunus species.


Euphytica ◽  
2014 ◽  
Vol 197 (2) ◽  
pp. 191-200 ◽  
Author(s):  
Seonghee Lee ◽  
Melisa H. Jia ◽  
Yulin Jia ◽  
Guangjie Liu

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sumandeep K. Bazzer ◽  
Larry C. Purcell

Abstract A consistent risk for soybean (Glycine max L.) production is the impact of drought on growth and yield. Canopy temperature (CT) is an indirect measure of transpiration rate and stomatal conductance and may be valuable in distinguishing differences among genotypes in response to drought. The objective of this study was to map quantitative trait loci (QTLs) associated with CT using thermal infrared imaging in a population of recombinant inbred lines developed from a cross between KS4895 and Jackson. Heritability of CT was 35% when estimated across environments. QTL analysis identified 11 loci for CT distributed on eight chromosomes that individually explained between 4.6 and 12.3% of the phenotypic variation. The locus on Gm11 was identified in two individual environments and across environments and explained the highest proportion of phenotypic variation (9.3% to 11.5%) in CT. Several of these CT loci coincided with the genomic regions from previous studies associated with canopy wilting, canopy temperature, water use efficiency, and other morpho-physiological traits related with drought tolerance. Candidate genes with biological function related to transpiration, root development, and signal transduction underlie these putative CT loci. These genomic regions may be important resources in soybean breeding programs to improve tolerance to drought.


2011 ◽  
Vol 101 (10) ◽  
pp. 1209-1216 ◽  
Author(s):  
P. Risser ◽  
E. Ebmeyer ◽  
V. Korzun ◽  
L. Hartl ◽  
T. Miedaner

Septoria tritici blotch (STB) is one of the most important leaf spot diseases in wheat worldwide. The goal of this study was to detect chromosomal regions for adult-plant resistance in large winter wheat populations to STB. Inoculation by two isolates with virulence to Stb6 and Stb15, both present in the parents, was performed and STB severity was visually scored plotwise as percent coverage of flag leaves with pycnidia-bearing lesions. ‘Florett’/‘Biscay’ and ‘Tuareg’/‘Biscay’, each comprising a cross of a resistant and a susceptible cultivar, with population sizes of 316 and 269 F7:8 recombinant inbred lines, respectively, were phenotyped across four and five environments and mapped with amplified fragment length polymorphism, diversity array technology, and simple sequence repeat markers covering polymorphic regions of ≈1,340 centimorgans. Phenotypic data revealed significant (P < 0.01) genotypic differentiation for STB, heading date, and plant height. Entry-mean heritabilities (h2) for STB were 0.73 for ‘Florett’/‘Biscay’ and 0.38 for ‘Tuareg’/‘Biscay’. All correlations between STB and heading date as well as between STB and plant height were low (r = –0.13 to –0.20). In quantitative trait loci (QTL) analysis, nine and six QTL were found for STB ratings explaining, together, 55 and 51% of phenotypic variation in ‘Florett’/‘Biscay’ and ‘Tuareg’/‘Biscay’, respectively. Genotype–environment and QTL–environment interactions had a large impact. Two major QTL were detected consistently across environments on chromosomes 3B and 6D from ‘Florett’ and chromosomes 4B and 6B from ‘Tuareg’, each explaining 12 to 17% of normalized adjusted phenotypic variance. These results indicate that adult-plant resistance to STB in both mapping populations was of a quantitative nature.


2004 ◽  
Vol 44 (7) ◽  
pp. 669 ◽  
Author(s):  
W. Barendse ◽  
R. Bunch ◽  
M. Thomas ◽  
S. Armitage ◽  
S. Baud ◽  
...  

The TG5 (thyroglobulin 5′ leader sequence) single nucleotide polymorphism has been associated with marbling in cattle fed for periods longer than 250 days. To test whether the association could be detected in diverse cattle, fed for less than 250 days, and to measure the size of the effect, we sampled 1750 cattle from the AMH Toowoomba feedlot. These cattle were sampled on 28 separate days, over 9 months. Their marbling scores covered the complete range. We found that the TG5 single nucleotide polymorphism was associated with marbling scores (P<0.05) and estimated that TG5 genotypes explained 6.5% of the residual deviance for the marbling phenotype. We also found that the '3' allele was more frequent in animals with higher marbling scores. The consistency of the allelic association between studies and, in particular, the association found in diverse cattle, indicate that the TG5 polymorphism can be used as a breeding tool and possibly a feedlot entry tool. To estimate the size of the genetic region in which the marbling quantitative trait loci are located, we tested the nearby DNA markers CSSM66 and BMS1747. These do not show allelic associations to marbling. The consistency of the allelic association between studies, the lack of association to nearby DNA markers and the complementary information on gene action of genes near Thyroglobulin suggest that DNA sequence variations, in or near the Thyroglobulin gene sequence, are the likely causes for the marbling quantitative trait loci. Further studies of single nucleotide polymorphism in and near the Thyroglobulin DNA sequence should allow causal mutations for the effect to be identified.


Sign in / Sign up

Export Citation Format

Share Document