Molecular mapping of novel genes controllingFusariumhead blight resistance and deoxynivalenol accumulation in spring wheat

Genome ◽  
2003 ◽  
Vol 46 (4) ◽  
pp. 555-564 ◽  
Author(s):  
Daryl J Somers ◽  
George Fedak ◽  
Marc Savard

Fusarium head blight of wheat is an extremely damaging disease, causing severe losses in seed yield and quality. The objective of the current study was to examine and characterize alternate sources of resistance to Fusarium head blight (FHB). Ninety-one F1-derived doubled haploid lines from the cross Triticum aestivum 'Wuhan-1' × Triticum aestivum 'Maringa' were examined for disease reaction to Fusarium graminearum by single-floret injection in replicated greenhouse trials and by spray inoculation in replicated field trials. Field and greenhouse experiments were also used to collect agronomic and spike morphology characteristics. Seed samples from field plots were used for deoxynivalenol (DON) determination. A total of 328 polymorphic microsatellite loci were used to construct a genetic linkage map in this population and together these data were used to identify QTL controlling FHB resistance, accumulation of DON, and agronomic and spike morphology traits. The analysis identified QTL for different types of FHB resistance in four intervals on chromosomes 2DL, 3BS, and 4B. The QTLs on 4B and 3BS proximal to the centromere are novel and not reported elsewhere. QTL controlling accumulation of DON independent of FHB resistance were located on chromosomes 2DS and 5AS. Lines carrying FHB resistance alleles on 2DL and 3BS showed a 32% decrease in disease spread after single-floret injection. Lines carrying FHB resistance alleles on 3BS and 4B showed a 27% decrease from the mean in field infection. Finally, lines carrying favourable alleles on 3BS and 5AS, showed a 17% reduction in DON accumulation. The results support a polygenic and quantitative mode of inheritance and report novel FHB resistance loci. The data also suggest that resistance to FHB infection and DON accumulation may be controlled, in part, by independent loci and (or) genes.Key words: marker-assisted selection, Fusarium, wheat, microsatellite.

Genome ◽  
2015 ◽  
Vol 58 (11) ◽  
pp. 479-488 ◽  
Author(s):  
David F. Garvin ◽  
Hedera Porter ◽  
Zachary J. Blankenheim ◽  
Shiaoman Chao ◽  
Ruth Dill-Macky

Much effort has been directed at identifying sources of resistance to Fusarium head blight (FHB) in wheat. We sought to identify molecular markers for what we hypothesized was a new major FHB resistance locus originating from the wheat cultivar ‘Freedom’ and introgressed into the susceptible wheat cultivar ‘USU-Apogee’. An F2:3 mapping population from a cross between Apogee and A30, its BC4 near-isoline exhibiting improved FHB resistance, was evaluated for resistance. The distribution of FHB resistance in the population approximated a 1:3 moderately resistant : moderately susceptible + susceptible ratio. Separate disease evaluations established that A30 accumulated less deoxynivalenol and yielded a greater proportion of sound grain than Apogee. Molecular mapping revealed that the FHB resistance of A30 is associated with molecular markers on chromosome arm 3DL that exhibit a null phenotype in A30 but are present in both Apogee and Freedom, indicating a spontaneous deletion occurred during the development of A30. Aneuploid analysis revealed that the size of the deleted segment is approximately 19% of the arm’s length. Our results suggest that the deleted interval of chromosome arm 3DL in Apogee may harbor FHB susceptibility genes that promote disease spread in infected spikes, and that their elimination increases FHB resistance in a novel manner.


Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1021
Author(s):  
Qing Xu ◽  
Fuchao Xu ◽  
Dandan Qin ◽  
Meifang Li ◽  
George Fedak ◽  
...  

Fusarium head blight (FHB) is a destructive disease of wheat (Triticum aestivum L.), which not only significantly reduces grain yield, but also affects end-use quality. Breeding wheat cultivars with high FHB resistance is the most effective way to control the disease. The Chinese wheat cultivar Jingzhou 66 (JZ66) shows moderately high FHB resistance; however, the genetic basis of its resistance is unknown. A doubled haploid (DH) population consisting 209 lines was developed from a cross of JZ66 and Aikang 58 (AK58), a FHB susceptible wheat cultivar, to identify quantitative trait loci (QTL) that contribute to the FHB resistance. Five field experiments were established across two consecutive crop seasons (2018 and 2019) to evaluate the DH lines and parents for FHB response. The parents and DH population were genotyped with the wheat 55K single-nucleotide polymorphism (SNP) assay. Six QTLs associated with FHB resistance in JZ66 were mapped on chromosome 2DS, 3AS, 3AL, 3DL, 4DS, and 5DL, respectively. Four of the QTL (QFhb.hbaas-2DS, QFhb.hbaas-3AL, QFhb.hbaas-4DS, and QFhb.hbaas-5DL) were detected in at least two environments, and the QTL on 3AL and 5DL might be new. The QTL with major effects, QFhb.hbaas-2DS and QFhb.hbaas-4DS, explained up to 36.2% and 17.6% of the phenotypic variance, and were co-localized with the plant semi-dwarfing loci Rht8 and Rht-D1. The dwarfing Rht8 allele significantly increased spike compactness (SC) and FHB susceptibility causing a larger effect on FHB response than Rht-D1 observed in this study. PCR–based SNP markers for QFhb.hbaas-2DS, QFhb.hbaas-3AL, QFhb.hbaas-4DS, and QFhb.hbaas-5DL, were developed to facilitate their use in breeding for FHB resistance by marker-assisted selection.


2013 ◽  
Vol 103 (12) ◽  
pp. 1252-1259 ◽  
Author(s):  
A. Linkmeyer ◽  
M. Götz ◽  
L. Hu ◽  
S. Asam ◽  
M. Rychlik ◽  
...  

Breeding for resistance is a key task to control Fusarium head blight (FHB), a devastating disease of small cereals leading to economic losses and grain contamination with mycotoxins harmful for humans and animals. In the present work, FHB resistance of the six-rowed spring barley ‘Chevron’ to FHB in Germany was compared with those of adapted German spring barley cultivars. Both under natural infection conditions and after spray inoculation with conidia of Fusarium culmorum, F. sporotrichioides, and F. avenaceum under field conditions, Chevron showed a high level of quantitative resistance to the infection and contamination of grain with diverse mycotoxins. This indicates that Chevron is not only a little susceptible to deoxynivalenol-producing Fusarium spp. but also to Fusarium spp. producing type A trichothecenes and enniatins. Monitoring the initial infection course of F. culmorum on barley lemma tissue by confocal laser-scanning microscopy provided evidence that FHB resistance of Chevron is partially mediated by a preformed penetration resistance, because direct penetration of floral tissue by F. culmorum was observed rarely on Chevron but was common on susceptible genotypes. Alternatively, F. culmorum penetrated Chevron lemma tissue via stomata, which was unusual for susceptible genotypes. We generated double-haploid barley populations segregating for the major FHB resistance quantitative trait loci (QTL) Qrgz-2H-8 of Chevron. Subsequently, we characterized these populations by spray inoculation with conidia of F. culmorum and F. sporotrichioides. This suggested that Qrgz-2H-8 was functional in the genetic background of European elite barley cultivars. However, the degree of achieved resistance was very low when compared with quantitative resistance of the QTL donor Chevron, and the introgression of Qrgz-2H-8 was not sufficient to mediate the cellular resistance phenotype of Chevron in the European backgrounds.


Genome ◽  
2012 ◽  
Vol 55 (12) ◽  
pp. 853-864 ◽  
Author(s):  
Yuefeng Ruan ◽  
André Comeau ◽  
François Langevin ◽  
Pierre Hucl ◽  
John M. Clarke ◽  
...  

Most tetraploid durum wheat (Triticum turgidum L var. durum) cultivars are susceptible to Fusarium head blight (FHB). This study reports novel quantitative trait loci (QTL) associated with FHB resistance. A backcross recombinant inbred line (BCRIL) population was developed from the cross BGRC3487/2*DT735, and 160 lines were evaluated for resistance to Fusarium graminearum Schwabe (teleomorph Gibberella zeae (Schwein. Petch) in field trials over 3 years (2008–2010) and to a F. graminearum 3-acetyl-deoxynivalenol (3-ADON) chemotype in greenhouse trials. The population was genotyped with 948 polymorphic loci using DArT and microsatellite markers. Eleven QTL were associated with FHB resistance under field conditions on chromosomes 2A, 3B, 5A, 5B, 7A, and 7B. Two of these, QFhb.usw-3B from BGRC3487 and QFhb.usw-7A2, were consistently detected over environments. The QFhb.usw-3B QTL was in a similar position to a resistance QTL in hexaploid wheat. The combination of the two QTL reduced field index by 53.5%–86.2%. Two QTL for resistance to the 3-ADON chemotype were detected on chromosomes 1B and 4B. Both BGRC3487 and DT735 could provide new sources of FHB resistance and the combination of QTL reported here could be valuable tools in breeding FHB-resistant durum wheat.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yiduo Zhang ◽  
Zibo Yang ◽  
Haicai Ma ◽  
Liying Huang ◽  
Feng Ding ◽  
...  

Wheat production is increasingly threatened by the fungal disease, Fusarium head blight (FHB), caused by Fusarium spp. The introduction of resistant varieties is considered to be an effective measure for containment of this disease. Mapping of FHB-resistance quantitative trait locus (QTL) has promoted marker-assisted breeding for FHB resistance, which has been difficult through traditional breeding due to paucity of resistance genes and quantitative nature of the resistance. The lab of Ma previously cloned Fhb1, which inhibits FHB spread within spikes, and fine mapped Fhb4 and Fhb5, which condition resistance to initial infection of Fusarium spp., from FHB-resistant indigenous line Wangshuibai (WSB). In this study, these three QTLs were simultaneously introduced into five modern Chinese wheat cultivars or lines with different ecological adaptations through marker-assisted backcross in early generations. A total of 14 introgression lines were obtained. All these lines showed significantly improved resistance to the fungal infection and disease spread in 2-year field trials after artificial inoculation. In comparison with the respective recipient lines, the Fhb1, Fhb4, and Fhb5 pyramiding could reduce the disease severity by 95% and did not systematically affect plant height, productive tiller number, kernel number per spike, thousand grain weight, flowering time, and unit yield (without Fusarium inoculation). These results indicated the great value of FHB-resistance QTLs Fhb1, Fhb4, and Fhb5 derived from WSB, and the feasibility and effectiveness of early generation selection for FHB resistance solely based on linked molecular markers.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248184
Author(s):  
Rachel Goddard ◽  
Andrew Steed ◽  
Pedro Luiz Scheeren ◽  
João Leodato Nunes Maciel ◽  
Eduardo Caierão ◽  
...  

Fusarium head blight (FHB) is a disease of wheat (Triticum aestivum L.) that causes major yield losses in South America, as well as many other wheat growing regions around the world. FHB results in low quality, contaminated grain due to the production of mycotoxins such as deoxynivalenol (DON). In Brazil, FHB outbreaks are increasing in frequency and are currently controlled by fungicides which are costly and potentially harmful to the wider environment. To identify the genetic basis of resistance to FHB in Brazilian wheat, two mapping populations (Anahuac 75 × BR 18-Terena and BR 18-Terena × BRS 179) segregating for FHB resistance were phenotyped and quantitative trait loci (QTL) analysis was undertaken to identify genomic regions associated with FHB-related traits. A total of 14 QTL associated with FHB visual symptoms were identified, each of which explained 3.7–17.3% of the phenotypic variance. Two of these QTL were stable across environments. This suggests FHB resistance in Anahuac 75, BR 18-Terena and BRS 179 is controlled by multiple genetic loci that confer relatively minor differences in resistance. A major, novel QTL associated with DON accumulation was also identified on chromosome 4B (17.8% of the phenotypic variance), as well as a major QTL associated with thousand-grain weight on chromosome 6B (16.8% phenotypic variance). These QTL could be useful breeding targets, when pyramided with major sources of resistance such as Fhb1, to improve grain quality and reduce the reliance on fungicides in Brazil and other countries affected by FHB.


Author(s):  
Mahender Singh Saharan ◽  
H. M. Akshay Kumar ◽  
Malkhan Singh Gurjar ◽  
Rashmi Aggarwal

2010 ◽  
Vol 121 (5) ◽  
pp. 941-950 ◽  
Author(s):  
Hao Bing Li ◽  
Guo Qiang Xie ◽  
Jun Ma ◽  
Gui Ru Liu ◽  
Shu Min Wen ◽  
...  

Plant Disease ◽  
2021 ◽  
Author(s):  
Bhavit Chhabra ◽  
Lovepreet Singh ◽  
Sydney Wallace ◽  
Adam Schoen ◽  
Yanhong Dong ◽  
...  

Fusarium head blight (FHB) primarily caused by Fusarium graminearum is a key disease of small grains. Diseased spikes show symptoms of premature bleaching shortly after infection and have aborted or shriveled seeds, resulting in reduced yields. The fungus also deteriorates quality and safety of the grain due to production of mycotoxins, especially deoxynivalenol (DON), which can result in grain being docked or rejected at the point of sale. Genetic host resistance to FHB is quantitative and no complete genetic resistance against this devastating disease is available. Alternative approaches to develop new sources of FHB resistance are needed. In this study, we performed extensive forward genetic screening of the M4 generation of an EMS induced mutagenized population of cultivar Jagger to isolate variants with FHB resistance. In field testing, 74 mutant lines were found to have resistance against FHB spread and 30 lines out of these also had low DON content. Subsequent testing over two years in controlled greenhouse conditions revealed ten M6 lines showing significantly lower FHB spread. Seven and six lines out of those 10 lines also had reduced DON content and lower FDKs, respectively. Future endeavors will include identification of the mutations that led to resistance in these variants.


2020 ◽  
Vol 13 (2) ◽  
pp. 235-246
Author(s):  
W.Q. Shi ◽  
L.B. Xiang ◽  
D.Z. Yu ◽  
S.J. Gong ◽  
L.J. Yang

Fusarium graminearum causes Fusarium head blight (FHB), a devastating disease that leads to extensive yield and quality loss in wheat and barley production. Integrated pest management (IPM) is required to control this disease and biofungicides, such as tetramycin, could be a novel addition to IPM strategies. The current study investigated in vitro tetramycin toxicity in Fusarium graminearum and evaluated its effectiveness for the control of Fusarium head blight FHB. Tetramycin was shown to affect three key aspects of Fusarium pathogenicity: spore germination, mycelium growth and deoxynivalenol (DON) production. The in vitro results indicated that tetramycin had strong inhibitory activity on the mycelial growth and spore germination. Field trials indicated that tetramycin treatment resulted in a significant reduction in both the FHB disease index and the level of DON accumulation. The reduced DON content in harvested grain was correlated with the amount of Tri5 mRNA determined by qRT-PCR. Synergistic effects between tetramycin and metconazole, in both the in vitro and field experiments were found. Tetramycin could provide an alternative option to control FHB.


Sign in / Sign up

Export Citation Format

Share Document