Screening of an EMS mutagenized population of a wheat cultivar susceptible to Fusarium head blight identifies resistant variants

Plant Disease ◽  
2021 ◽  
Author(s):  
Bhavit Chhabra ◽  
Lovepreet Singh ◽  
Sydney Wallace ◽  
Adam Schoen ◽  
Yanhong Dong ◽  
...  

Fusarium head blight (FHB) primarily caused by Fusarium graminearum is a key disease of small grains. Diseased spikes show symptoms of premature bleaching shortly after infection and have aborted or shriveled seeds, resulting in reduced yields. The fungus also deteriorates quality and safety of the grain due to production of mycotoxins, especially deoxynivalenol (DON), which can result in grain being docked or rejected at the point of sale. Genetic host resistance to FHB is quantitative and no complete genetic resistance against this devastating disease is available. Alternative approaches to develop new sources of FHB resistance are needed. In this study, we performed extensive forward genetic screening of the M4 generation of an EMS induced mutagenized population of cultivar Jagger to isolate variants with FHB resistance. In field testing, 74 mutant lines were found to have resistance against FHB spread and 30 lines out of these also had low DON content. Subsequent testing over two years in controlled greenhouse conditions revealed ten M6 lines showing significantly lower FHB spread. Seven and six lines out of those 10 lines also had reduced DON content and lower FDKs, respectively. Future endeavors will include identification of the mutations that led to resistance in these variants.

2000 ◽  
Vol 1 (1) ◽  
pp. 19 ◽  
Author(s):  
Robert W. Stack

Several species of fungus cause Fusarium Head Blight (FHB), but F. graminearum has been important in the US. The mixture of maize, wheat and barley production, and use of reduced tillage and increased residue retention encourage epidemics of FHB. Strong interest in use of fungicide sprays continues but the complete answer remains elusive. Molecular marker-assisted plant breeding is being used to breed for FHB resistance. Posted 22 June 2000.


Plants ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1021
Author(s):  
Qing Xu ◽  
Fuchao Xu ◽  
Dandan Qin ◽  
Meifang Li ◽  
George Fedak ◽  
...  

Fusarium head blight (FHB) is a destructive disease of wheat (Triticum aestivum L.), which not only significantly reduces grain yield, but also affects end-use quality. Breeding wheat cultivars with high FHB resistance is the most effective way to control the disease. The Chinese wheat cultivar Jingzhou 66 (JZ66) shows moderately high FHB resistance; however, the genetic basis of its resistance is unknown. A doubled haploid (DH) population consisting 209 lines was developed from a cross of JZ66 and Aikang 58 (AK58), a FHB susceptible wheat cultivar, to identify quantitative trait loci (QTL) that contribute to the FHB resistance. Five field experiments were established across two consecutive crop seasons (2018 and 2019) to evaluate the DH lines and parents for FHB response. The parents and DH population were genotyped with the wheat 55K single-nucleotide polymorphism (SNP) assay. Six QTLs associated with FHB resistance in JZ66 were mapped on chromosome 2DS, 3AS, 3AL, 3DL, 4DS, and 5DL, respectively. Four of the QTL (QFhb.hbaas-2DS, QFhb.hbaas-3AL, QFhb.hbaas-4DS, and QFhb.hbaas-5DL) were detected in at least two environments, and the QTL on 3AL and 5DL might be new. The QTL with major effects, QFhb.hbaas-2DS and QFhb.hbaas-4DS, explained up to 36.2% and 17.6% of the phenotypic variance, and were co-localized with the plant semi-dwarfing loci Rht8 and Rht-D1. The dwarfing Rht8 allele significantly increased spike compactness (SC) and FHB susceptibility causing a larger effect on FHB response than Rht-D1 observed in this study. PCR–based SNP markers for QFhb.hbaas-2DS, QFhb.hbaas-3AL, QFhb.hbaas-4DS, and QFhb.hbaas-5DL, were developed to facilitate their use in breeding for FHB resistance by marker-assisted selection.


Genome ◽  
2015 ◽  
Vol 58 (11) ◽  
pp. 479-488 ◽  
Author(s):  
David F. Garvin ◽  
Hedera Porter ◽  
Zachary J. Blankenheim ◽  
Shiaoman Chao ◽  
Ruth Dill-Macky

Much effort has been directed at identifying sources of resistance to Fusarium head blight (FHB) in wheat. We sought to identify molecular markers for what we hypothesized was a new major FHB resistance locus originating from the wheat cultivar ‘Freedom’ and introgressed into the susceptible wheat cultivar ‘USU-Apogee’. An F2:3 mapping population from a cross between Apogee and A30, its BC4 near-isoline exhibiting improved FHB resistance, was evaluated for resistance. The distribution of FHB resistance in the population approximated a 1:3 moderately resistant : moderately susceptible + susceptible ratio. Separate disease evaluations established that A30 accumulated less deoxynivalenol and yielded a greater proportion of sound grain than Apogee. Molecular mapping revealed that the FHB resistance of A30 is associated with molecular markers on chromosome arm 3DL that exhibit a null phenotype in A30 but are present in both Apogee and Freedom, indicating a spontaneous deletion occurred during the development of A30. Aneuploid analysis revealed that the size of the deleted segment is approximately 19% of the arm’s length. Our results suggest that the deleted interval of chromosome arm 3DL in Apogee may harbor FHB susceptibility genes that promote disease spread in infected spikes, and that their elimination increases FHB resistance in a novel manner.


Author(s):  
Sydney Wallace ◽  
Bhavit Chhabra ◽  
Yanhong Dong ◽  
Xuefeng Ma ◽  
Gary Coleman ◽  
...  

Fusarium Head Blight (FHB) is a destructive disease affecting the grain yield and quality of wheat, barley, rye and triticale. Developing varieties with genetic resistance is integral to successfully managing FHB. However, significant knowledge gap exists in the genetic diversity present in triticale for FHB resistance. This information is critical for breeding new varieties of triticale as its production continues to increase. In the present study, a set of 298 winter triticale accessions from a worldwide collection were screened for their type-2 FHB resistance in an artificially inoculated misted nursery with high levels of inoculum density. Most of the triticale accessions were susceptible to FHB, and only 8% of accessions showed resistance in the field nursery screening. The resistant accessions identified in the nursery screening were selected and further screened for three years in greenhouse conditions. Seven accessions were found to show robust FHB resistance over the three years of greenhouse testing. Thirteen accessions showed significantly lower levels of Deoxynivalenol accumulation when compared to the susceptible triticale control. The accessions identified in the study will be useful in triticale and wheat breeding programs for enhancing FHB resistance and reducing DON accumulation.


2020 ◽  
Vol 11 ◽  
Author(s):  
Yuefeng Ruan ◽  
Wentao Zhang ◽  
Ron E. Knox ◽  
Samia Berraies ◽  
Heather L. Campbell ◽  
...  

Durum wheat is an economically important crop for Canadian farmers. Fusarium head blight (FHB) is one of the most destructive diseases that threatens durum production in Canada. FHB reduces yield and end-use quality and most commonly contaminates the grain with the fungal mycotoxin deoxynivalenol, also known as DON. Serious outbreaks of FHB can occur in durum wheat in Canada, and combining genetic resistance with fungicide application is a cost effective approach to control this disease. However, there is limited variation for genetic resistance to FHB in elite Canadian durum cultivars. To explore and identify useful genetic FHB resistance variation for the improvement of Canadian durum wheat, we assembled an association mapping (AM) panel of diverse durum germplasms and performed genome wide association analysis (GWAS). Thirty-one quantitative trait loci (QTL) across all 14 chromosomes were significantly associated with FHB resistance. On 3BS, a stable QTL with a larger effect for resistance was located close to the centromere of 3BS. Three haplotypes of Fhb1 QTL were identified, with an emmer wheat haplotype contributing to disease susceptibility. The large number of QTL identified here can provide a rich resource to improve FHB resistance in commercially grown durum wheat. Among the 31 QTL most were associated with plant height and/or flower time. QTL 1A.1, 1A.2, 3B.2, 5A.1, 6A.1, 7A.3 were associated with FHB resistance and not associated or only weakly associated with flowering time nor plant height. These QTL have features that would make them good targets for FHB resistance breeding.


2021 ◽  
Author(s):  
Xianrui Guo ◽  
Qinghua Shi ◽  
Jing Yuan ◽  
Mian Wang ◽  
Jing Wang ◽  
...  

AbstractFusarium head blight (FHB), caused by Fusarium species, seriously threaten global wheat production. Three wheat-Th.elongatum FHB resistant translocation lines have been developed and used for breeding. Transcriptomic analysis identified a derivative glutathione S-transferase transcript T26102, which was homologous to Fhb7 and induced dramatically by Fusarium graminearum. Homologs of Fhb7 were detected in several genera in Triticeae, including Thinopyrum, Elymus, Leymus, Pseudoroegeria and Roegeria. Several wheat-Thinopyrum translocation lines carrying Fhb7 remain susceptible to FHB, and transgenic plants overexpressing the T26102 on different backgrounds did not improve the FHB resistance. Taken as a whole, we show the application of the chromatin derived from diploid Thinopyrum elongatum successfully conferring wheat with high level FHB resistance independent of the Fhb7.One Sentence SummaryThinopyrum elongatum chromatin from 7EL was successfully applied to wheat FHB resistance breeding, but the resistant gene other than the reported Fhb7 remained unknown.


2021 ◽  
Author(s):  
Yunzhe Zhao ◽  
Xinying Zhao ◽  
Mengqi Ji ◽  
Wenqi Fang ◽  
Hong Guo ◽  
...  

Abstract Background: Fusarium head blight (FHB) is a disease affecting wheat spikes caused by Fusarium species, which leads to cases of severe yield reduction and seed contamination. Therefore, identifying resistance genes from various sources is always of importance to wheat breeders. In this study, a genome-wide association study (GWAS) focusing on FHB using a high-density genetic map constructed with 90K single nucleotide polymorphism (SNP) arrays in a panel of 205 elite winter wheat accessions, was conducted in 3 environments. Results: Sixty-six significant marker–trait associations (MTAs) were identified (P<0.001) on fifteen chromosomes explaining 5.4–11.2% of the phenotypic variation therein. Some important new genomic regions involving FHB resistance were found on chromosomes 2A, 3B, 5B, 6A, and 7B. On chromosome 7B, 6 MTAs at 92 genetic positions were found in 2 environments. Moreover, there were 11 MTAs consistently associated with diseased spikelet rate and diseased rachis rate as pleiotropic effect loci. Eight new candidate genes of FHB resistance were predicated in wheat. Of which, three genes: TraesCS5D01G006700, TraesCS6A02G013600, and TraesCS7B02G370700 on chromosome 5DS, 6AS, and 7BL, respectively, were important in defending against FHB by regulating chitinase activity, calcium ion binding, intramolecular transferase activity, and UDP-glycosyltransferase activity in wheat. In addition, a total of six excellent alleles associated with wheat scab resistance were discovered. Conclusion: These results provide important genes/loci for enhancing FHB resistance in wheat breeding populations by marker-assisted selection.


2021 ◽  
Author(s):  
Maira R. Duffeck ◽  
Ananda Y. Bandara ◽  
Dilooshi K. Weerasooriya ◽  
Alyssa Collins ◽  
Philip J. Jensen ◽  
...  

Fusarium graminearum is the main causal species of Fusarium head blight (FHB) globally. Recent changes in the trichothecene (toxin) types in the North American FHB pathogens support the need for continued surveillance. In this study, 461 isolates were obtained from symptomatic spikes of wheat, spelt, barley, and rye crops during 2018 and 2019. These were all identified to species and toxin types using molecular-based approaches. An additional set of 77 F. graminearum isolates obtained from overwintering crop residues during Winter 2012 were molecularly identified to toxin types. A subset of 31 F. graminearum isolates (15 15ADON and 16 3ADON) were assessed for mycelial growth, macroconidia, perithecia, and ascospore production, and sensitivity to two triazole fungicides. Ninety percent of isolates obtained from symptomatic spikes (n = 418) belonged to F. graminearum, with another four species found at a lower frequency (n = 39). F. graminearum isolates from symptomatic spikes were mainly of the 15ADON (95%), followed by 3ADON (4%), NIV (0.7%), and NX-2 (0.3%) toxin types. All F. graminearum isolates obtained from overwintering residue were of the 15ADON type. Toxin types could not be differentiated based on multivariate analysis of growth and reproduction traits. All isolates were sensitive to tebuconazole and metconazole fungicides in vitro. This study confirms the dominance of F. graminearum and suggests ecological and environmental factors that lead to similar composition of toxin types in Northern U.S. Our results are useful to assess the sustainability of FHB management practices and provide a baseline for future FHB surveys.


2009 ◽  
Vol 44 (No. 4) ◽  
pp. 147-159 ◽  
Author(s):  
Srinivasachary ◽  
N. Gosman ◽  
A. Steed ◽  
S. Faure ◽  
R. Bayles ◽  
...  

Fusarium head blight (FHB) is a destructive disease of wheat worldwide. We aimed to map QTL for FHB resistance in RL4137, a FHB resistant line derived from Frontana using 90 recombinant inbred lines (RIL) from a cross between RL4137 and the moderately FHB resistant variety Timgalen. A total of seven putative FHB resistance QTL (1B, 2B, 3A, 6A, 6B, 7A and 7D) were identified and in all but one instance, the alleles from RL4137 had a positive effect on FHB resistance. The QTL, Qfhs.jic-2band Qfhs.jic-6b contributed by the alleles from RL4137 and Timgalen, respectively were detected in multiple trials. Our study also identified three QTL for plant height (2B, 4A and 5B), two QTL for weight of infected spikelets from infected ears (2B and 6A) and one QTL for &ldquo;awns&rdquo; (2B). The QTL mapped on 2B for PH, WIS and awns co-localized with Qfhs.jic-2b. The FHB QTL on 1B and 6B were not associated with PH QTL and that the minor PH QTL on 4A and 5B, did not co-localise with any other FHB resistance QTL.


2020 ◽  
Vol 8 (7) ◽  
pp. 1036 ◽  
Author(s):  
Akos Mesterhazy ◽  
Andrea Gyorgy ◽  
Monika Varga ◽  
Beata Toth

In resistance tests to Fusarium head blight (FHB), the mixing of inocula before inoculation is normal, but no information about the background of mixing was given. Therefore, four experiments (2013–2015) were made with four independent isolates, their all-possible (11) mixtures and a control. Four cultivars with differing FHB resistance were used. Disease index (DI), Fusarium damaged kernels (FDK) and deoxynivalenol (DON) were evaluated. The isolates used were not stable in aggressiveness. Their mixtures did not also give a stable aggressiveness; it depended on the composition of mix. The three traits diverged in their responses. After the mixing, the aggressiveness was always less than that of the most pathogenic component was. However, in most cases it was significantly higher than the arithmetical mean of the participating isolates. A mixture was not better than a single isolate was. The prediction of the aggressiveness level is problematic even if the aggressiveness of the components was tested. Resistance expression is different in the mixing variants and in the three traits tested. Of them, DON is the most sensitive. More reliable resistance and toxin data can be received when instead of one more independent isolates are used. This is important when highly correct data are needed (genetic research or cultivar registration).


Sign in / Sign up

Export Citation Format

Share Document