A high- and low-temperature inducible Arabidopsis thaliana HSP101 promoter located in a nonautonomous Mutator-like element

Genome ◽  
2005 ◽  
Vol 48 (3) ◽  
pp. 547-555 ◽  
Author(s):  
Lester W Young ◽  
Rebecca H Cross ◽  
S Ashley Byun-McKay ◽  
Ron W Wilen ◽  
Peta C Bonham-Smith

Transcriptional activity of a 573-bp fragment of HSP101 (At1g74310) incorporated into a Mutator-like element (MULE) transposon was investigated in Arabidopsis thaliana Columbia. Sequence identity between the HSP101-MULE arrangement and a continuous segment of the original HSP101 promoter, 5' UTR exon, and open reading frame (ORF) was high (87%) but lower in the 5' UTR intron (69%). Collectively, the HSP101 ORF, the MULE 5' terminal inverted repeat (TIR), and the 1.3 kb immediately upstream of the TIR is located on chromosome IV, and we refer to it as HSP101B. Located within the HSP101B promoter, upstream of 2 heat shock elements (HSEs), are 4 COR15a-like low-temperature response elements (LTREs). The HSP101B ORF was transcribed in the leaves and inflorescences of high-temperature stress (HTS) treated Arabidopsis thaliana but not in low-temperature stress (LTS) and control plants. Transiently transformed Arabidopsis seedlings, as well as stable transformed lines of Linum usitatissimum (flax) and Brassica napus (canola) containing a HSP101B promoter:GUS construct, showed either LTS-, or LTS- and HTS-, induced β-glucuronidase expression. Results from PCR amplifications of HpaII- and MspI-digested Arabidopsis genomic DNA suggest that endogenous expression of HSP101B may be downregulated by partial methylation of the HSP101B sequence between the TIRs of the associated MULE.Key words: promoter function, low temperature stress, high temperature stress; Arabidopsis HSP101, Mutator-like element, transposon.

2019 ◽  
Vol 39 (9) ◽  
pp. 1583-1599 ◽  
Author(s):  
Jiazhi Shen ◽  
Dayan Zhang ◽  
Lin Zhou ◽  
Xuzhou Zhang ◽  
Jieren Liao ◽  
...  

Abstract To determine the mechanisms in tea plants responding to temperature stresses (heat and cold), we examined the global transcriptomic and metabolomic profiles of the tea plant cultivar ‘Suchazao’ under moderately low temperature stress (ML), severely low temperature stress (SL), moderately high temperature stress (MH) and severely high temperature stress (SH) using RNA-seq and high performance liquid chromatography tandem mass spectrometry/mass spectrometry (HPLC-MS/MS), respectively. The identified differentially expressed genes indicated that the synthesis of stress-resistance protein might be redirected to cope with the temperature stresses. We found that heat shock protein genes Hsp90 and Hsp70 played more critical roles in tea plants in adapting to thermal stress than cold, while late embryogenesis abundant protein genes (LEA) played a greater role under cold than heat stress, more types of zinc finger genes were induced under cold stress as well. In addition, energy metabolisms were inhibited by SH, SL and ML. Furthermore, the mechanisms of anthocyanin synthesis were different under the cold and heat stresses. Indeed, the CsUGT75C1 gene, encoding UDP-glucose:anthocyanin 5-O-glucosyl transferase, was up-regulated in the SL-treated leaves but down-regulated in SH. Metabolomics analysis also showed that anthocyanin monomer levels increased under SL. These results indicate that the tea plants share certain foundational mechanisms to adjust to both cold and heat stresses. They also developed some specific mechanisms for surviving the cold or heat stresses. Our study provides effective information about the different mechanisms tea plants employ in surviving cold and heat stresses, as well as the different mechanisms of anthocyanin synthesis, which could speed up the genetic breeding of heat- and cold-tolerant tea varieties.


1984 ◽  
Vol 38 (1) ◽  
pp. 129-132 ◽  
Author(s):  
H. Heitman ◽  
J. R. Cockrell ◽  
S. R. Morrison

ABSTRACTTwenty-four 1-year-old boars of proven fertility were assigned randomly to one of two temperature-controlled trailers. A control group in each trial was held at 17 ± 0·5°C while the other group was exposed to a diurnal ambient temperature cycle. Cycles followed a sine-wave pattern with minimum and maximum temperatures occurring at 04.00 and 16.00 h respectively. Cycling temperature ranges were 17 to 33 ± 0·5°C (low-temperature stress), 19·5 to 35·5 ± 0·5°C (medium-temperature stress), and 22 to 38 ± 0·5°C (high-temperature stress). Semen samples were collected every 3 or 4 days over an experimental period of 42 days.Low-temperature stress and medium-temperature stress boars were not affected significantly in the five parameters of semen quality observed. The difference between controls and high-temperature stress boars was highly significant for motility, abnormal spermatozoa, gel-free volume, and total spermatozoa per ejaculate. Concentration of spermatozoa was not affected by treatment. Significant time effects were observed for motility, abnormal spermatozoa and total spermotozoa per ejaculate. Significant differences began to appear after 2 or 3 weeks and changes still appeared to be occurring at 6 weeks.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1072
Author(s):  
T. Casey Barickman ◽  
Omolayo J. Olorunwa ◽  
Akanksha Sehgal ◽  
C. Hunt Walne ◽  
K. Raja Reddy ◽  
...  

Early season sowing is one of the methods for avoiding yield loss for basil due to high temperatures. However, basil could be exposed to sub-optimal temperatures by planting it earlier in the season. Thus, an experiment was conducted that examines how temperature changes and carbon dioxide (CO2) levels affect basil growth, development, and phytonutrient concentrations in a controlled environment. The experiment simulated temperature stress, low (20/12 °C), and high (38/30 °C), under ambient (420 ppm) and elevated (720 ppm) CO2 concentrations. Low-temperature stress prompted the rapid closure of stomata resulting in a 21% decline in net photosynthesis. Chlorophylls and carotenoids decreased when elevated CO2 interacted with low-temperature stress. Basil exhibited an increase in stomatal conductance, intercellular CO2 concentration, apparent quantum yield, maximum photosystem II efficiency, and maximum net photosynthesis rate when subjected to high-temperature stress. Under elevated CO2, increasing the growth temperature from 30/22 °C to 38/30 °C markedly increased the antioxidants content of basil. Taken together, the evidence from this research recommends that varying the growth temperature of basil plants can significantly affect the growth and development rates compared to increasing the CO2 concentrations, which mitigates the adverse effects of temperature stress.


2021 ◽  
Author(s):  
Caihui Wang ◽  
Min Chen ◽  
Bo Liu ◽  
Junhao Ning ◽  
Xia Lu ◽  
...  

Abstract Background: Bohai Red, a new Argopecten scallop strain selected from the hybrids between the Peruvian scallop, Argopecten purpuratus and the bay scallop northern subspecies, A. irradians irradians, is now one of the most cultured scallop strains in northern China. As one of a series of studies focusing on adaptation of Bohai Red scallops to fluctuations in environmental factors, this study aimed to examine the expression profile of Wnt genes in response to different temperature stresses in Bohai Red. Results: As Bohai Red scallops were originated from the hybrids between the Peruvian scallop and the bay scallop northern subspecies, we first identified all Wnt genes from the genomes of the Peruvian scallop and the bay scallop northern subspecies, as well as the bay scallop southern subspecies, A. i. concentricus. Twelve Wnt members were identified from the two subspecies of bay scallop, and 13 Wnt genes were found in the genome of the Peruvian scallop. Protein structure analyses showed that most Wnt genes poses all 5 conserved motifs except Wnt 1, Wnt 2, Wnt 6 and Wnt 9 in the bay scallops and Wnt2 and Wnt9 in the Peruvian scallop. Unexpectedly, Wnt8 gene was present while Wnt3 was absent in both the bay scallops and the Peruvian scallop. Phylogenetic analysis revealed that Wnt3 may have disappeared in the early evolution of mollusks. The expression profile of Wnt genes in Bohai Red exposed to different temperatures were examined by qRT-PCR. The results showed that expression of Wnt genes responded differentially to temperature changes. The Wnt genes such as Wnt1, Wnt6, Wnt7, Wnt11 and WntA that responded slowly to low and high temperature stresses may be related to the maintenance of basic homeostasis. Other Wnt genes such as Wnt4, Wnt9, Wnt5 and Wnt2 that responded rapidly to low temperature may play an important role in organismal protection against low temperature stress. And yet some Wnt genes including Wnt10, Wnt16, and Wnt8 that responded quickly to high temperature stress may play key roles in response to organismal stress provoked by high temperature stress. Conclusions: Wnt genes are well conserved in Argopecten scallops, as in other bivalves. Wnt genes may play important roles in adaptation of Bohai Red scallops to changing temperatures. The results in this study will provide new insights into the evolution and function of Wnt genes in bivalves and eventually benefit culture of Bohai Red scallops.


Sign in / Sign up

Export Citation Format

Share Document