Identification and analysis of differentially expressed genes in differentiating xylem of Chinese fir (Cunninghamia lanceolata) by suppression subtractive hybridization

Genome ◽  
2007 ◽  
Vol 50 (12) ◽  
pp. 1141-1155 ◽  
Author(s):  
Guifeng Wang ◽  
Yan Gao ◽  
Liwei Yang ◽  
Jisen Shi

Wood is an important raw material for global industries with rapidly increasing demand. To isolate the genes differentially expressed during xylogenesis of Chinese fir ( Cunninghamia lanceolata (Lamb.) Hook.), we used a novel system. Forward and reverse subtracted cDNA libraries were constructed using the suppression subtractive hybridization method; for the forward library we used cDNA from the mutant Dugansha as the tester and cDNA from the wild-type clone Jurong 0 as the driver, and for the reverse library we used Jurong 0 cDNA as the tester and Dugansha cDNA as the driver. Transcriptional profiling was performed using a macroarray with 4 digoxigenin-labeled probes. We obtained 618 and 409 clones from the forward and the reverse subtracted library, respectively. A total of 405 unique expressed sequence tags (ESTs) were obtained. Forty percent of the ESTs exhibited homologies with proteins of known function and fell into 4 major classes: metabolism, cell wall biogenesis and remodeling, signal transduction, and stress. Real-time PCR was performed to confirm the results. The expression levels of 11 selected ESTs were consistent with both macroarray and real-time PCR results. The systematic analysis of genes involved in wood formation in Chinese fir provides valuable insights into the molecular mechanisms involved in xylem differentiation and is an important resource for forest research that can be directed toward understanding the genetic control of wood formation and future endeavors to modify wood and fiber properties for industrial use.

Genes ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 835 ◽  
Author(s):  
Ma ◽  
Lin

: Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) is one of the most important coniferous evergreen tree species in South China due to its desirable attributes of fast growth and production of strong and hardy wood. However, the yield of Chinese fir is often inhibited by aluminum (Al) toxicity in acidic soils of South China. Understanding the molecular mechanisms of Chinese fir root responses to Al toxicity might help to further increase its productivity. Here we used the Illumina Hiseq4000 platform to carry out transcriptome analysis of Chinese fir roots subjected to Al toxicity conditions. A total of 88.88 Gb of clean data was generated from 12 samples and assembled into 105,732 distinct unigenes. The average length and N50 length of these unigenes were 839 bp and 1411 bp, respectively. Among them, 58362 unigenes were annotated through searches of five public databases (Nr: NCBI non-redundant protein sequences, Swiss-Prot: A manually annotated and reviewed protein sequence database, GO: Gene Ontology, KOG/COG: Clusters of Orthologous Groups of proteins, and KEGG: the Kyoto Encyclopedia of Genes and Genomes database), which led to association of unigenes with 44 GO terms. Plus, 1615 transcription factors (TFs) were functionally classified. Then, differentially expressed genes (DEGs, |log2(fold change)| ≥ 1 and FDR ≤ 0.05) were identified in comparisons labelled TC1 (CK-72 h/CK-1 h) and TC2 (Al-72 h/Al-1 h). A large number of TC2 DEGs group were identified, with most being down-regulated under Al stress, while TC1 DEGs were primarily up-regulated. Combining GO, KEGG, and MapMan pathway analysis indicated that many DEGs are involved in primary metabolism, including cell wall metabolism and lipid metabolism, while other DEGs are associated with signaling pathways and secondary metabolism, including flavonoids and phenylpropanoids metabolism. Furthermore, TFs identified in TC1 and TC2 DEGs represented 21 and 40 transcription factor families, respectively. Among them, expression of bHLH, C2H2, ERF, bZIP, GRAS, and MYB TFs changed considerably under Al stress, which suggests that these TFs might play crucial roles in Chinese fir root responses to Al toxicity. These differentially expressed TFs might act in concert with flavonoid and phenylpropanoid pathway genes in fulfilling of key roles in Chinese fir roots responding to Al toxicity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Songling Han ◽  
Wei Zhu ◽  
Weili Yang ◽  
Qijie Guan ◽  
Chao Chen ◽  
...  

BackgroundStomach adenocarcinoma (STAD) is the most common histological type of stomach cancer, which causes a considerable number of deaths worldwide. This study aimed to identify its potential biomarkers with the notion of revealing the underlying molecular mechanisms.MethodsGene expression profile microarray data were downloaded from the Gene Expression Omnibus (GEO) database. The “limma” R package was used to screen the differentially expressed genes (DEGs) between STAD and matched normal tissues. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used for function enrichment analyses of DEGs. The STAD dataset from The Cancer Genome Atlas (TCGA) database was used to identify a prognostic gene signature, which was verified in another STAD dataset from the GEO database. CIBERSORT algorithm was used to characterize the 22 human immune cell compositions. The expression of LRFN4 and CTHRC1 in tissues was determined by quantitative real-time PCR from the patients recruited to the present study.ResultsThree public datasets including 90 STAD patients and 43 healthy controls were analyzed, from which 44 genes were differentially expressed in all three datasets. These genes were implicated in biological processes including cell adhesion, wound healing, and extracellular matrix organization. Five out of 44 genes showed significant survival differences. Among them, CTHRC1 and LRFN4 were selected for construction of prognostic signature by univariate Cox regression and stepwise multivariate Cox regression in the TCGA-STAD dataset. The fidelity of the signature was evaluated in another independent dataset and showed a good classification effect. The infiltration levels of multiple immune cells between high-risk and low-risk groups had significant differences, as well as two immune checkpoints. TIM-3 and PD-L2 were highly correlated with the risk score. Multiple signaling pathways differed between the two groups of patients. At the same time, the expression level of LRFN4 and CTHRC1 in tissues analyzed by quantitative real-time PCR were consistent with the in silico findings.ConclusionThe present study constructed the prognostic signature by expression of CTHRC1 and LRFN4 for the first time via comprehensive bioinformatics analysis, which provided the potential therapeutic targets of STAD for clinical treatment.


2020 ◽  
Vol 20 (5) ◽  
pp. 388-395 ◽  
Author(s):  
Yue Wang ◽  
Youjun Wu ◽  
Kun Xiao ◽  
Yingjie Zhao ◽  
Gang Lv ◽  
...  

Background: Colorectal cancer (CRC) is the second leading cause of death worldwide, and distant metastasis is responsible for the poor prognosis in patients with advanced-stage CRC. RPS24 (ribosomal protein S24) as a ribosomal protein, multiple transcript variant encoding different isoforms have been found for this gene. Our previous studies have demonstrated that RPS24 is overexpressed in CRC. However, the mechanisms underlying the role of RPS24 in tumor development have not been fully defined. Methods: Expression of RPS24 isoforms and lncRNA MVIH in CRC tissues and cell lines were quantified by real-time PCR or western blotting assay. Endothelial tube formation assay was performed to determine the effect of RPS24 on tumor angiogenesis. The cell viability of HUVEC was determined by MTT assay, and the migration and invasion ability of HUVEC were detected by transwell assay. PGK1 secretion was tested with a specific ELISA kit. Results: Here, we found that RPS24c isoform was a major contributor to tumor angiogenesis, a vital process in tumor growth and metastasis. Real-time PCR revealed that RPS24c isoform was highly expressed in CRC tissues, while other isoforms are present in both normal and CRC tissues with no statistical difference. Moreover the change of RPS24 protein level is mainly due to the fluctuation of RPS24c. Furthermore, we observed that silencing RPS24c could decrease angiogenesis by inhibiting tubule formation, HUVEC cell proliferation and migration. Additionally, we investigated the molecular mechanisms and demonstrated that RPS24c mRNA interacted with lncRNA MVIH, the binding-interaction enhanced the stability of each other, thereby activated angiogenesis by inhibiting the secretion of PGK1. Conclusion: RPS24c facilitates tumor angiogenesis via the RPS24c/MVIH/PGK1 pathway in CRC. RPS24c inhibition may be a novel option for anti-vascular treatment in CRC.


2021 ◽  
pp. 1-16
Author(s):  
Esteban Leyton ◽  
Diego Matus ◽  
Sandra Espinoza ◽  
José Matías Benitez ◽  
Bastián I. Cortes ◽  
...  

Background: Disturbances in the autophagy/endolysosomal systems are proposed as early signatures of Alzheimer’s disease (AD). However, few studies are available concerning autophagy gene expression in AD patients. Objective: To explore the differential expression of classical genes involved in the autophagy pathway, among them a less characterized one, DEF8 (Differentially expressed in FDCP 8), initially considered a Rubicon family member, in peripheral blood mononuclear cells (PBMCs) from individuals with mild cognitive impairment (MCI) and probable AD (pAD) and correlate the results with the expression of DEF8 in the brain of 5xFAD mice. Method: By real-time PCR and flow cytometry, we evaluated autophagy genes levels in PBMCs from MCI and pAD patients. We evaluated DEF8 levels and its localization in brain samples of the 5xFAD mice by real-time PCR, western blot, and immunofluorescence. Results: Transcriptional levels of DEF8 were significantly reduced in PBMCs of MCI and pAD patients compared with healthy donors, correlating with the MoCA and MoCA-MIS cognitive tests scores. DEF8 protein levels were increased in lymphocytes from MCI but not pAD, compared to controls. In the case of brain samples from 5xFAD mice, we observed a reduced mRNA expression and augmented protein levels in 5xFAD compared to age-matched wild-type mice. DEF8 presented a neuronal localization. Conclusion: DEF8, a protein proposed to act at the final step of the autophagy/endolysosomal pathway, is differentially expressed in PBMCs of MCI and pAD and neurons of 5xFAD mice. These results suggest a potential role for DEF8 in the pathophysiology of AD.


Sign in / Sign up

Export Citation Format

Share Document