Molecular cytogenetic and agronomic characterization of advanced generations of wheat × triticale hybrids resistant to Diuraphis noxia (Mordvilko): application of GISH and microsatellite markers

Genome ◽  
2009 ◽  
Vol 52 (4) ◽  
pp. 353-360 ◽  
Author(s):  
K. K. Nkongolo ◽  
S. D. Haley ◽  
N. S. Kim ◽  
P. Michael ◽  
G. Fedak ◽  
...  

The PI 386148 triticale from Russia is among the highest resistant line to the Russian wheat aphid (RWA) ( Diuraphis noxia (Mordvilko)). This triticale line was used as the male parent in crosses with Lamar wheat ( Triticum aestivum L.). The F1 plants were backcrossed to Lamar wheat. The progenies were tested for RWA biotype 1 reaction for at least eight backcross and selfing generations. Five lines from these selections were identified for their resistance to the RWA and their seeds were increased for agronomic and other characterizations. Molecular and cytological analyses of these lines were performed using genomic in situ hybridization and rye chromosome-specific microsatellites markers. Three lines were cytologically stable and carried a pair of rye ( Secale strictum (C. Presl) C. Presl) chromosomes as disomic addition lines of 1R. One line was unstable and showed a moderate level of mixoploidy with monosomic additions of 1R. Duplication of rye chromosome 1R was also identified. No wheat–rye chromosome interchange was detected, suggesting little homology between S. strictum and T. aestivum chromosomes. Specific microsatellite primers were used to identify the rye chromosomes present in each line. One rye chromosome, 1R, from the donor species contains genes for RWA resistance. Grain yield and test weight of three of the lines were similar to some adapted released wheat varieties under stress conditions.

Genomics ◽  
1993 ◽  
Vol 17 (2) ◽  
pp. 403-407 ◽  
Author(s):  
Elizabeth A. Lindsay ◽  
Stephanie Halford ◽  
Roy Wadey ◽  
Peter J. Scambler ◽  
Antonio Baldini

2020 ◽  
Vol 14 (3) ◽  
pp. 369-385
Author(s):  
Carini Picardi Moraes de Castro ◽  
Danon Clemes Cardoso ◽  
Ricardo Micolino ◽  
Maykon Passos Cristiano

Telomeric sequences are conserved across species. The most common sequence reported among insects is (TTAGG)n, but its universal occurrence is not a consensus because other canonical motifs have been reported. In the present study, we used fluorescence in situ hybridization (FISH) using telomeric probes with (TTAGG)6 repeats to describe the telomere composition of leafcutter ants. We performed the molecular cytogenetic characterization of six Acromyrmex Mayr, 1865 and one Atta Fabricius, 1804 species (Acromyrmex ambiguus (Emery, 1888), Ac. crassispinus (Forel, 1909), Ac. lundii (Guérin-Mèneville, 1838), Ac. nigrosetosus (Forel, 1908), Ac. rugosus (Smith, 1858), Ac. subterraneus subterraneus (Forel, 1893), and Atta sexdens (Linnaeus, 1758)) and described it using a karyomorphometric approach on their chromosomes. The diploid chromosome number 2n = 38 was found in all Acromyrmex species, and the karyotypic formulas were as follows: Ac. ambiguus 2K = 14M + 12SM + 8ST + 4A, Ac. crassispinus 2K = 12M + 20SM + 4ST + 2A, Ac. lundii 2K = 10M + 14SM + 10ST + 4A, Ac. nigrosetosus 2K = 12M + 14SM + 10ST + 2A, and Ac. subterraneus subterraneus 2K = 14M + 18SM + 4ST + 2A. The exact karyotypic formula was not established for Ac. rugosus. FISH analyses revealed the telomeric regions in all the chromosomes of the species studied in the present work were marked by the (TTAGG)6 sequence. These results reinforce the premise that Formicidae presents high homology between their genera for the presence of the canonical sequence (TTAGG)n.


2020 ◽  
Vol 21 (11) ◽  
pp. 4053
Author(s):  
Liqiang Song ◽  
Hui Zhao ◽  
Zhi Zhang ◽  
Shuai Zhang ◽  
Jiajia Liu ◽  
...  

Production of wheat-alien disomic addition lines is of great value to the exploitation and utilization of elite genes originated from related species to wheat. In this study, a novel wheat-Aegilops biuncialis 5Mb disomic addition line WA317 was characterized by in situ hybridization (ISH) and specific-locus amplified fragment sequencing (SLAF-seq) markers. Compared to its parent Chinese Spring (CS), the glumes of WA317 had black color and were difficult to remove after harvesting, suggesting chromosome 5Mb carried gene(s) related to glume development and Triticeae domestication process. A total of 242 Ae. biuncialis SLAF-based markers (298 amplified patterns) were developed and further divided into four categories by Ae. biuncialis Y17, Ae. umbellulata Y139 and Ae. comosa Y258, including 172 markers amplifying the same bands of U and M genome, six and 102 markers amplifying U-specific and M-specific bands, respectively and eighteen markers amplifying specific bands in Y17. Among them, 45 markers had the specific amplifications in WA317 and were 5Mb specific markers. Taken together, line WA317 with tenacious and black glumes should serve as the foundation for understanding of the Triticeae domestication process and further exploitation of primitive alleles for wheat improvement. Ae. biuncialis SLAF-based markers can be used for studying syntenic relationships between U and M genomes as well as rapid tracking of U and M chromosomal segments in wheat background.


2020 ◽  
Vol 160 (1) ◽  
pp. 47-56
Author(s):  
Aybeniz J. Aliyeva ◽  
András Farkas ◽  
Naib Kh. Aminov ◽  
Klaudia Kruppa ◽  
Márta Molnár-Láng ◽  
...  

The chromosomal constitution of 9 dwarf (D) and 8 semidwarf (SD) lines derived by crossing hexaploid Triticale line NA-75 (AABBRR, 2n = 6x = 42) with Triticumaestivum (AABBDD, 2n = 6x = 42) cv. Chinese Spring was investigated using molecular cytogenetic techniques: fluorescence in situ hybridization and genomic in situ hybridization. A wheat-rye translocation (T4DS.7RL), 8 substitution lines, and a ditelosomic addition line (7RSdt) were identified. In the substitution lines, 1, 2, or 4 pairs of wheat chromosomes, belonging to the A, B, or D genome, were replaced by rye chromosomes. Substitutions between chromosomes belonging to different wheat genomes [5B(5A), 1D(1B)] also occurred. The lines were genetically stable, each carrying 42 chromosomes, except the wheat-rye ditelosomic addition line, which carried 21 pairs of wheat chromosomes and 1 pair of rye telocentric chromosomes (7RS). The chromosome pairing behavior of the lines was studied during metaphase I of meiosis. The chromosome pairing level and the number of ring bivalents were different for each line. Besides rod bivalents, univalent and multivalent associations (tri- and quadrivalents) were also detected. The main goal of the experiment was to develop genetically stable wheat/Triticale recombinant lines carrying chromosomes/chromatin fragments originating from the R genome of Triticale line NA-75. Introgression of rye genes into hexaploid wheat can broaden its genetic diversity, and the newly developed lines can be used in wheat breeding programs.


Genome ◽  
2012 ◽  
Vol 55 (11) ◽  
pp. 765-774 ◽  
Author(s):  
Meng-Ping Lei ◽  
Guang-Rong Li ◽  
Cheng Liu ◽  
Zu-Jun Yang

Wild Secale species, Secale africanum Stapf., serve as a valuable source for increasing the diversity of cultivated rye (Secale cereale L.) and provide novel genes for wheat improvement. New wheat – S. africanum chromosome 1Rafr addition, 1Rafr(1D) substitution, 1BL.1RafrS and 1DS.1RafrL translocation, and 1RafrL monotelocentric addition lines were identified by chromosome banding and in situ hybridization. Disease resistance screening revealed that chromosome 1RafrS carries resistance gene(s) to new stripe rust races. Twenty-nine molecular markers were localized on S. africanum chromosome 1Rafr by the wheat – S. africanum introgression lines. Twenty markers can also identically amplify other reported wheat – S. cereale chromosome 1R derivative lines, indicating that there is high conservation between the wild and cultivated Secale chromosome 1R. Nine markers displayed polymorphic amplification between S. africanum and S. cereale chromosome 1Rafr derivatives. The comparison of the nucleotide sequences of these polymorphic markers suggested that gene duplication and sequence divergence may have occurred among Secale species during its evolution and domestication.


2012 ◽  
Vol 2012 ◽  
pp. 1-5 ◽  
Author(s):  
F. Sheth ◽  
O. R. Akinde ◽  
C. Datar ◽  
O. V. Adeteye ◽  
J. Sheth

The Wolf-Hirschhorn syndrome (WHS) is a multiple malformation and contiguous gene syndrome resulting from the deletion encompassing a 4p16.3 region. A microscopically visible terminal deletion on chromosome 4p (4p16→pter) was detected in Case 1 with full blown features of WHS. The second case which had an interstitial microdeletion encompassingWHSC 1andWHSC 2genes at 4p16.3 presented with less striking clinical features of WHS and had an apparently “normal” karyotype. The severity of the clinical presentation was as a result of haploinsufficiency and interaction with surrounding genes as well as mutations in modifier genes located outside the WHSCR regions. The study emphasized that an individual with a strong clinical suspicion of chromosomal abnormality and a normal conventional cytogenetic study should be further investigated using molecular cytogenetic techniques such as fluorescencein situhybridization (FISH) or array-comparative genomic hybridization (a-CGH).


Genome ◽  
2007 ◽  
Vol 50 (1) ◽  
pp. 43-50 ◽  
Author(s):  
É. Szakács ◽  
M. Molnár-Láng

This paper describes a series of winter wheat – winter barley disomic addition lines developed from hybrids between winter wheat line Triticum aestivum L. ‘Martonvásári 9 kr1’ and the German 2-rowed winter barley cultivar Hordeum vulgare L. ‘Igri’. The barley chromosomes in a wheat background were identified from the fluorescent in situ hybridization (FISH) patterns obtained with various combinations of repetitive DNA probes: GAA–HvT01 and pTa71–HvT01. The disomic addition lines 2H, 3H, and 4H and the 1HS isochromosome were identified on the basis of a 2-colour FISH with the DNA probe pairs GAA–pAs1, GAA–HvT01, and pTa71–HvT01. Genomic in situ hybridization was used to confirm the presence of the barley chromosomes in the wheat genome. The identification of the barley chromosomes in the addition lines was further confirmed with simple-sequence repeat markers. The addition lines were also characterized morphologically.


Sign in / Sign up

Export Citation Format

Share Document