Association of a nematode resistance bearing addition chromosome with a recurring leaf intumescence somaclonal variation in sugar beet

Genome ◽  
1991 ◽  
Vol 34 (3) ◽  
pp. 477-485
Author(s):  
M. H. Yu ◽  
L. M. Pakish ◽  
J. W. Saunders

Intumescent leaf variants of sugar beet (Beta vulgaris L.) were obtained through callus culture of a monosomic addition that carried resistance to Heterodera schachtii Schm. The frothy pockmarked appearance of the leaf surface was due to hyperplastic growth of the mesophyll and epidermal cells. The epidermis had many malformed stomata. Veins were underdeveloped, but protrusions beneath were pronounced. Intumescence occurred in 20.3% of the regenerated plants and it was heritable to F1 and later progeny. Leaf intumescence is a new phenotype for Beta. About 73.5% of regenerants contained the donor somatic chromosome number, the remainder were doubled or mixoploids, with no chromosome losses apparent. The 38-chromosome intumescent plant represents a dual somaclonal variation, chromosome doubling and leaf intumescence. Progeny of the 19- and 38-chromosome intumescent plants intercrossed or pollinated by diploids or tetraploids had 9, 18, 19, 27, 28, 29, 36, 37, 38, or 39 chromosomes. All intumescent plants were aneuploids with the monosome addition. There were linkages for leaf intumescence (Li), resistance to H. schachtii (Hs), and hypocotyl color (Rpro) on the addition chromosome. The efficacy of Hs remained intact through the in vitro culture and succeeding crosses. The Li-bearing plants manifested depressed growth and markedly reduced seed set. Leaf intumescence was thought to be the alternative expression of galling potential of Beta procumbens Chr. Sm. germ plasm.Key words: somaclonal variation, leaf intumescence, nematode resistance, monosomic addition, Beta vulgaris L.

2015 ◽  
Vol 2 (1) ◽  
pp. 12-22 ◽  
Author(s):  
L. Pylypenko ◽  
K. Kalatur

Heterodera schachtii Schmidt, 1871 is one of the most economically important pests of sugar beet (Beta vulgaris L.) worldwide. It is also widespread in most sugar beet growing regions in Ukraine causing serious yield reduction and decreasing sugar content of sugar beet in infested fi elds. An advanced parasitic strategy of H. schachtii is employed to support nematode growth, reproduction and harmfulness. In intensive agriculture systems the nematode control measures heavily rely on nematicides and good agricultural practice (crop rota- tion in the fi rst place). But alternative strategies based on nematode resistant sugar beet cultivars and hybrids are required as none of nematicides approved for the open fi eld application are registered in Ukraine. Here we review the achievements and problems of breeding process for H. schachtii resistance and provide the results of national traditional breeding program. Since the beginning of 1980s fi ve sugar beet cultivars (Verchnyatskyi 103, Yaltuschkivska 30, Bilotcerkivska 45, BTs-40 and Yuvileynyi) and seventeen lines partly resistant or toler- ant to H. schachtii have been obtained throughout targeted crossing and progenies assessment in the infested fi elds. The further directions for better utilization of genetic sources for nematode resistance presented in na- tional gene bank collection are emphasized. There is a need for more accurate identifi cation of resistance genes, broader application of reliable molecular markers (suitable for marker-assisted selection of nematode resistant plants in the breeding process) and methods for genetic transformation of plants. Crop cash value and national production capacity should drive the cooperation in this fi eld. Knowledge as well as germplasm exchange are thereby welcomed that can benefi t breeding progress at national and international level.


2013 ◽  
Vol 12 (4) ◽  
pp. 168-178 ◽  
Author(s):  
Farhad Taghipour ◽  
Narges Janalizade ◽  
Maryam Eshrati ◽  
Taraneh Hassanzade ◽  
Fahrul Huyop

1978 ◽  
Vol 20 (2) ◽  
pp. 177-186 ◽  
Author(s):  
Helen Savitsky

Three diploid nematode-resistant plants derived from hybrids between Beta vulgaris L. and B. procumbens Chr. Sm. were crossed with diploid nematode-susceptible plants. The rates of resistance transmission from the F1 hybrids to the F2 varied from 7 to 27%. The transmission rate of F2 plants derived from F1 plants with transmission rates over 20% averaged 20.9%. The rate for F2 plants derived from F1 plants with transmission rates of 10% or lower averaged 11.3%. In diploid plants nematode resistance was transmitted through the pollen at lower frequencies than through egg cells. Transmission through female gametes varied from 11.0 to 31.4% and through male gametes of the same plants from 0 to 19.7%. In some pollen mother cells (PMCs) of diploid nematode-resistant plants meiosis was normal and gametes derived from these cells transmitted resistance to the next generation. Abnormalities were observed in other PMCs, including the detachment of the B. procumbens segment from the translocated chromosome, the formation of bridges, and the lagging of broken translocated chromosomes. The inadequate transmission of resistance was caused by a loss of the B. procumbens segment in some B. vulgaris bivalents.


Bioenergy ◽  
2021 ◽  
Author(s):  
M. V. Roik ◽  
N. S. Kovalchuk ◽  
O. A. Zinchenko ◽  
L. H. Fedoroshchak ◽  
V. I. Vlasiuk ◽  
...  

Purpose. Investigation of cytogenetic aspects of embryological processes in the culture of immature apomictic embryos, breeding genotypes of sugar beet with cytoplasmic sterility for differentiation and selection by gametophyte reduced parthenogenesis. Methods. Cytological, biotechnological, fluorescent cytophotometry, field, laboratory. Results. The cytogenetic features of genesis of immature apomictic embryos cells induced in vitro on the 12th, 20th and 22th days of development have been investigated on the basis of CMS apozygotic lines of Beta vulgaris and alloplasmic lines of wild species Beta maritime and Beta patula. Indicators of efficiency of haploid reduced parthenogenesis in vitro in alloplasmic lines significantly exceeded the best technologies in pollen-sterile lines of sugar beet from 3.79% to 6.25% and had a value of 62.2%, 24.8%, and 16.7%, respectively. Stabilization of genome ploidy to diploid was carried out in selected breeding numbers without colchicine, based on evaluation and selection of genome ploidy using software of ploidy analyzer (AP) Partec. Conclusions. The efficiency of haploid reduced parthenogenesis induction in vitro in apozygotic CMS breeding genotypes of sugar beet as affected by genetic potential of cytoplasm and taking into account the total percentage of haploids (50 units; 100 units) and myxoploids (50 units; 100 units) has been investigated. Homozygous lines were created by stabilizing the genome ploidy of haploid and myxoploid micro sprouts during III–IV passages without the use of colchicine. Technologies of rooting in the open ground for use in the breeding process of sugar beets have been improved.


Sign in / Sign up

Export Citation Format

Share Document