Random amplified polymorphic DNA markers for DNA fingerprinting and genetic variability assessment of minute parasitic wasp species (Hymenoptera: Mymaridae and Trichogrammatidae) used in biological control programs of phytophagous insects

Genome ◽  
1993 ◽  
Vol 36 (3) ◽  
pp. 580-587 ◽  
Author(s):  
Benoit S. Landry ◽  
Louise Dextraze ◽  
Guy Boivin

Biological control of insects that feed on our crops has become more practical in recent years by mass release of egg parasitoid microhymenoptera. Trichogramma species are now commercially reared and spread in commercial fields to control specific insect pests. Microhymenoptera species are, however, very small and morphologically indistinguishable within species, although strains of a given species differ in their efficiency to control specific insect pests. Traditional taxonomy is unable to differentiate microhymenoptera species at the strain level. It is becoming increasingly important to develop a reliable system to monitor genetic variations both within and between strains of commercially important microhymenoptera, to detect genetic drift occurring during several generations of multiplication, to protect patents, and to certify the lots of commercially released microhymenoptera. We have developed a system based on DNA markers to rapidly characterize individuals of five species of microhymenoptera from the genus Anaphes and Trichogramma including a new species of Anaphes not previously described. The main components of our system are a rapid and simple DNA micro-extraction method and fast DNA polymorphism analyses based on random amplified polymorphic DNA markers.Key words: genetic mapping, population genetics, Anaphes spp., Trichogramma spp., RAPD, DNA markers, DNA fingerprinting.

2012 ◽  
Vol 5 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Gislayne Trindade Vilas-Bôas ◽  
Rita C. Alvarez ◽  
Clelton A. Dos Santos ◽  
Laurival A. Vilas-Boas

As proteínas Cry produzidas pela bactéria entomopatogênica Bacillus thuringiensis Berliner são bem conhecidas devido a alta citotoxicidade que exibem a uma variedade de insetos-alvo. O modo de ação destas proteínas é específico e torna os produtos à base de B. thuringiensis os mais amplamente utilizados em programas de controle biológico de pragas na agricultura e de importantes vetores de doenças humanas. Contudo, embora as proteínas Cry sejam os fatores de virulência inseto-específico mais conhecidos, linhagens de B. thuringiensis apresentam também uma ampla gama de fatores de virulência, os quais permitem à bactéria atingir a hemolinfa e colonizar eficientemente o inseto hospedeiro. Dentre estes fatores, destacam-se as proteínas Vip, Cyt, enterotoxinas, hemolisinas, fosfolipases, proteases, enzimas de degradação, além das recentemente descritas parasporinas. Essa revisão aborda a ação desses fatores de virulência, bem como a caracterização e o controle da expressão de seus genes. Adicionalmente, são discutidos aspectos relacionados ao nicho ecológico da bactéria com ênfase nas características envolvidas com a biossegurança da utilização dos produtos à base de B. thuringiensis para o controle biológico de insetos-alvo. Virulence Factors of Bacillus thuringiensis Berliner: Something Beyond of Cry Proteins? Abstract. The Cry proteins produced by the entomopathogenic bacterium Bacillus thuringiensis Berliner are widely known due to its high toxicity against a variety of insects. The mode of action of these proteins is specific and becomes B. thuringiensis-based products the most used in biological control programs of insect pests in agriculture and of important human disease vectors. However, while the Cry proteins are the best-known insect-specific virulence factor, strains of B. thuringiensis show also a wide range of other virulence factors, which allow the bacteria to achieve the hemolymph and colonize efficiently the insect host. Among these factors, we highlight the Vip proteins, Cyt, enterotoxins, hemolysins, phospholipases, proteases and enzymes of degradation, in addition to the recently described parasporin. This review explores the action of these virulence factors, as well as, the characterization and control of expression of their genes. Additionally, we discuss aspects related to the ecological niche of the bacteria with emphasis on the characteristics involved in the biosafety of the use of B. thuringiensis-based products for biological control of target insects.


2000 ◽  
Vol 29 (3) ◽  
pp. 507-514 ◽  
Author(s):  
Ronaldo Reis Jr ◽  
Og De Souza ◽  
Evaldo F. Vilela

A well known case of ineffective natural biological control: the puzzling coexistence of the coffee leaf miner, Leucoptera coffeellum (Guérin-Mèneville), and its natural enemies was analyzed. Despite being a suitable prey to eight parasitoid species and three wasp species, all occurring simultaneously, the coffee leaf miner too often presents populations far above the damaging level for the coffee plantation. It is demonstrated that predatory wasps and parasitoids interact negatively, possibly because predatory wasps kill parasitized miner's larvae. In doing so, predatory wasps indirectly kill parasitoids, thereby impairing the efficacy of the natural biological control. It is warned that biological control programs should be based on knowledge of food web interactions, rather than simply on strategies involving introduction of exotic natural enemies.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11540
Author(s):  
Jessica Lettmann ◽  
Karsten Mody ◽  
Tore-Aliocha Kursch-Metz ◽  
Nico Blüthgen ◽  
Katja Wehner

Biological control of pest insects by natural enemies may be an effective, cheap and environmentally friendly alternative to synthetic pesticides. The cosmopolitan parasitoid wasp species Bracon brevicornis Wesmael and B. hebetor Say (Hymenoptera: Braconidae) use lepidopteran species as hosts, including insect pests like Ephestia kuehniella or Ostrinia nubilalis. Here, we compare the reproductive success of both Bracon species on E. kuehniella in a laboratory experiment. We asked (1) how the reproductive success on a single host larva changes with temperature, (2) how it changes with temperature when more host larvae are present and (3) how temperature and availability of host larvae influence the efficacy of Bracon species as biological control agents. In general, differences between B. brevicornis and B. hebetor have been small. For rearing both Bracon species in the laboratory on one host larva, a temperature between 20–27 °C seems appropriate to obtain the highest number of offspring with a female-biased sex ratio. Rearing the braconid wasps on more than one host larva revealed a higher number of total offspring but less offspring per host larva on average. Again, highest numbers of offspring hatched at 27 °C and the sex ratio was independent from temperature. Although no parasitoids hatched at 12 °C and only few at 36 °C, host larvae were still paralyzed. The efficacy of B. brevicornis was higher than 80% at all numbers of host larvae presented at all temperatures while the efficacy of B. hebetor was less than 80% at 12 °C and 27 °C at low numbers of host larvae presented. In conclusion, practitioners can use either B. brevicornis or B. hebetor at low and high temperatures and at varying host densities to achieve high pest control efficacy.


2011 ◽  
Vol 102 (1) ◽  
pp. 1-8 ◽  
Author(s):  
R.C.O. de Freitas Bueno ◽  
J.R.P. Parra ◽  
A. de Freitas Bueno

AbstractIn order to succeed in biological control programs, not only is it crucial to understand the number of natural enemies to be released but also on how many sites per area this releasing must be performed. These variables might differ deeply among egg parasitoid species and crops worked. Therefore, these trials were carried out to evaluate the parasitism (%) in eggs of Anticarsia gemmatalis and Pseudoplusia includens after the release of different densities of the egg parasitoid Trichogramma pretiosum. Field dispersal was also studied, in order to determine appropriate recommendations for the release of this parasitoid in soybean fields. The regression analysis between parasitism (%) and densities of the parasitoid indicated a quadratic effect for both A. gemmatalis and P. includens. The maximum parasitism within 24 h after the release was reached with densities of 25.6 and 51.2 parasitoids per host egg, respectively, for the two pests. Parasitism of T. pretiosum in eggs of P. includens decreased linearly as the distance of the pest eggs from the parasitoid release sites increased. For P. includens, the mean radius of T. pretiosum action and the area of parasitoid dispersal in the soybean crop were 8.01 m and 85.18 m2, respectively. We conclude that for a successful biological control program of lepidopteran pests using T. pretiosum in soybean fields, a density of 25.6 parasitoids per host egg, divided into 117 sites per hectare, should be used.


2021 ◽  
Vol 31 (1) ◽  
Author(s):  
Amany M. Abd El Azim ◽  
Etr H. K. Khashaba

Abstract Background Entomopathogenic nematodes (EPNs) are a group of nematode families, have the ability to search for their hosts, and are considered as promising biological control candidates for insect pests, providing protection to non-target organisms and the environment. Results This study was conducted to isolate indigenous EPN isolates from Egyptian agricultural soils for further use in biological control programs and study their genetic polymorphism among the previously isolated isolates under accession no. MH553167 and MK300683 and the new isolate (MH496627), using the start codon targeted (SCoT) marker. One out of 15 soil samples obtained from a banana cultivated field was positive for the presence of EPNs, using the Galleria baiting method. Morphological analysis and sequencing of the internal transcribed spacer (ITS) region suggested that the isolate obtained belongs to Heterorhabditis indica. The sequence of the ITS was submitted to the National Center for Biotechnology Information (NCBI) and registered under accession no. MH496627. Ten SCoT primers were used in the study; the polymorphic bands were 68 out of 76 with 89% as polymorphism percentage. The highest numbers of bands were 10 bands generated by SCoT 1 and SCoT 18 while SCoT 48 and SCoT 60 recorded the lowest band number (5 bands). Conclusions The present study is considered as a preliminary study to demonstrate the effectiveness of the SCoT marker for the first time in assessing genetic relationships in EPNs.


2005 ◽  
Vol 74 (1) ◽  
pp. 51-67 ◽  
Author(s):  
S.M. Smith

An overview of biological control programs against forest insect pests is presented with emphasis on Canadian case histories. The work is examined in the context of conservation, introduction, and augmentation (environmental manipulation and inoculative and inundative release) of insect natural enemies, specifically parasitoids. Historically, studies have concentrated on introductions of exotic parasitoids for control of introduced pests where a number of successes have been recorded. More recent work has entailed inoculative and inundative releases of parasitoids against native pests in an attempt to establish new host-parasitoid relationships to reduce pest populations. These have had limited success and are still being explored by Canadian researchers. Current strategies for using natural enemies are inundative release of native species against native pests and conservation of native parasitoids through selective insecticide timing and forest manipulation. Future directions in biological control programs will include these approaches with increased emphasis on biotechnology and the genetic selection or manipulation of 'desired strains' for release. Continued ecological studies will be essential to ensure a more complete understanding of the interaction between these 'selected parasitoids' and the forest/tree parameters which will influence their success (tri-trophic interactions). These parameters, such as tree vigour (pest resistance), spatial distribution and diversity, will also be targeted for selection to improve the effect of insect natural enemies in the forest environment.


Sociobiology ◽  
2018 ◽  
Vol 65 (2) ◽  
pp. 312 ◽  
Author(s):  
Gabriel Castro Jacques ◽  
Tiago Georg Pikart ◽  
Vinicius Silva Santos ◽  
Lucas Oliveira Vicente ◽  
Luís Cláudio Paterno Silveira

Kale (Brassica oleraceae var. acephala) is of great importance in human nutrition and local agricultural economies, but its growth is impaired by the attack of several insect pests. Social wasps prey on these pests, but few studies report the importance of this predation or the potential use of wasps as biological control for agricultural pests. This study aimed to survey the species of social wasps that forage in kale (B. oleraceae var. acephala), recording the influence of temperature and time of day on the foraging behavior of these wasps. The research was conducted at the Federal Institute of Education, Science and Technology of Minas Gerais - Bambuí Campus, from July to December 2015, when twelve collections of social wasps that foraged on a common area of kale cultivation were made, noting the temperature and time of collection for each wasp. Polybia ignobilis, Protonectarina sylveirae and Protopolybia sedula were the most common wasp species foraging in fields of kale. Interspecific interactions between wasp species did not affect their coexistence within kale fields, with peak foraging occurring between 1000 and 1100 hours. Social wasps are important predators of herbivorous insects in the agricultural environment and the coexistence of a great diversity of these predators can help control pest insects that occur in the crop. Moreover, knowing factors that influence foraging behaviors of common wasp species that occur in this crop is important for effective use of these insects in the biological control of pests.


2000 ◽  
Vol 6 (S2) ◽  
pp. 666-667
Author(s):  
E. L. Styer ◽  
J. J. Hamm

Economically important insects include pests of plants, animals and stored products as well as insects produced commercially (honey bees, silkworms, insects for fish bait and food for birds and zoo animals). Other insects are produced in large numbers for experimental purposes, biological control of insect pests and weeds and the production of sterile insects for population suppression. Insect viruses may affect morphology, physiology and behavior, often reducing longevity and reproductive potential. Thus insect viruses can be used as biological control agents of pest insects. Insect viruses may also interfere with the production or function of biological control agents (e.g., parasitoids and predators) and insects used for research purposes. Therefore, it is advantageous to screen commercial and research colonies and imported insects for viruses.Electron microscopy of negatively stained specimens (NS EM) offers a relatively rapid and inexpensive means of screening populations of insects for the presence of viruses or viruslike particles and to monitor the progress of virus control programs.


2020 ◽  
Vol 8 ◽  
Author(s):  
Huayan Chen ◽  
Elijah Talamas ◽  
Hong Pang

Trissolcus Ashmead (Hymenoptera: Scelionidae) is a cosmopolitan genus of egg-parasitoid wasps associated with stink bugs (Pentatomidae, Scutelleridae, Urostylididae), many of which are important insect pests. Documentation of host associations for these wasps, which we here provide via museum specimens, can support their use as biological control agents of invasive stink bugs. The hosts of seven Trissolcus species are reported from China: Trissolcus cultratus (Mayr) (hosts: Hippotiscus dorsalis Stål, Pentatomidae; Urochela luteovaria Distant, Urostylididae), Trissolcus elasmuchae (Watanabe) (host: Niphe elongata (Dallas), Pentatomidae), Trissolcus japonicus (Ashmead) (hosts: Erthesina fullo (Thunberg), Pentatomidae; Rhaphigaster nebulosa (Poda), Pentatomidae), Trissolcus latisulcus (Crawford) (host: Poecilocoris latus Dallas, Scutelleridae), Trissolcus mitsukurii (Ashmead) (host: Pentatomidae), Trissolcus semistriatus (Nees von Esenbeck) (host: Eurydema sp., Scutelleridae), Trissolcus yamagishii Ryu (host: Niphe elongata (Dallas), Pentatomidae).


Sign in / Sign up

Export Citation Format

Share Document