Triglyceride lipases alter fuel metabolism and mitochondrial gene expressionThis paper is one of a selection of papers published in this Special Issue, entitled 14th International Biochemistry of Exercise Conference – Muscles as Molecular and Metabolic Machines, and has undergone the Journal’s usual peer review process.

2009 ◽  
Vol 34 (3) ◽  
pp. 340-347 ◽  
Author(s):  
Matthew J. Watt

Fatty acids derived from the hydrolysis of adipose tissue and skeletal muscle triacylglycerol (TG) are an important energy substrate at rest and during prolonged moderate-intensity exercise. Hormone sensitive lipase (HSL) was long considered to be the rate-limiting enzyme for adipocyte and skeletal muscle TG lipolysis. However, the understanding of TG lipolysis regulation was recently challenged by the finding that adipose TG lipase (ATGL) is the predominant TG lipase in adipose tissue and an important regulator of TG degradation in skeletal muscle. Thus, it is now proposed that ATGL and HSL regulate lipolysis in a serial manner, with ATGL cleaving the first fatty acid and HSL the second fatty acid of TG. Further to this biochemical evaluation, the generation and metabolic characterization of ATGL−/− and HSL−/− mice have revealed distinct phenotypes. ATGL−/− mice are obese, exhibit impaired thermogenesis, oxidize more carbohydrate, and die prematurely due to cardiac dysfunction. Studies in HSL−/− mice report defective β-adrenergic stimulated lipolysis, protection against high-fat diet-induced obesity, and possible impairments in insulin secretion. This review outlines the current understanding of the cellular regulation of TG lipases, lipolytic regulation, and the functional implications of manipulating ATGL and HSL in vivo.

1999 ◽  
Vol 276 (2) ◽  
pp. E241-E248 ◽  
Author(s):  
Kevin Evans ◽  
Mo L. Clark ◽  
Keith N. Frayn

We have studied the fate of lipoprotein lipase (LPL)-derived fatty acids by measuring arteriovenous differences across subcutaneous adipose tissue and skeletal muscle in vivo. Six subjects were fasted overnight and were then given 40 g of triacylglycerol either orally or as an intravenous infusion over 4 h. Intracellular lipolysis (hormone-sensitive lipase action; HSL) was suppressed after both oral and intravenous fat loads ( P < 0.001). Insulin, a major regulator of HSL activity, showed little change after either oral or intravenous fat load, suggesting that suppression of HSL action occurred independently of insulin. The rate of action of LPL (measured as triacylglycerol extraction) increased with both oral and intravenous fat loads in adipose tissue ( P = 0.002) and skeletal muscle ( P = 0.001). There was increased escape of LPL-derived fatty acids into the circulation from adipose tissue, shown by lack of reesterification of fatty acids. There was no release into the circulation of LPL-derived fatty acids from skeletal muscle. These results suggest that insulin is not essential for HSL suppression or increased triacylglycerol clearance but is important in reesterification of fatty acids in adipose tissue but not uptake by skeletal muscle, thus affecting fatty acid partitioning between adipose tissue and the circulation, postprandial nonesterified fatty acid concentrations, and hepatic very low density lipoprotein secretion.


2009 ◽  
Vol 34 (3) ◽  
pp. 315-322 ◽  
Author(s):  
Gregory R. Steinberg

During moderate-intensity exercise, fatty acids are the predominant substrate for working skeletal muscle. The release of fatty acids from adipose tissue stores, combined with the ability of skeletal muscle to actively fine tune the gradient between fatty acid and carbohydrate metabolism, depending on substrate availability and energetic demands, requires a coordinated system of metabolic control. Over the past decade, since the discovery that AMP-activated protein kinase (AMPK) was increased in accordance with exercise intensity, there has been significant interest in the proposed role of this ancient stress-sensing kinase as a critical integrative switch controlling metabolic responses during exercise. In this review, studies examining the role of AMPK as a regulator of fatty acid metabolism in both adipose tissue and skeletal muscle during exercise will be discussed. Exercise induces activation of AMPK in adipocytes and regulates triglyceride hydrolysis and esterfication through phosphorylation of hormone sensitive lipase (HSL) and glycerol-3-phosphate acyl-transferase, respectively. In skeletal muscle, exercise-induced activation of AMPK is associated with increases in fatty acid uptake, phosphorylation of HSL, and increased fatty acid oxidation, which is thought to occur via the acetyl-CoA carboxylase-malony-CoA-CPT-1 signalling axis. Despite the importance of AMPK in regulating fatty acid metabolism under resting conditions, recent evidence from transgenic models of AMPK deficiency suggest that alternative signalling pathways may also be important for the control of fatty acid metabolism during exercise.


2004 ◽  
Vol 287 (1) ◽  
pp. E120-E127 ◽  
Author(s):  
Matthew J. Watt ◽  
Anna G. Holmes ◽  
Gregory R. Steinberg ◽  
Jose L. Mesa ◽  
Bruce E. Kemp ◽  
...  

Intramuscular triacylglycerols (IMTG) are proposed to be an important metabolic substrate for contracting muscle, although this remains controversial. To test the hypothesis that reduced plasma free fatty acid (FFA) availability would increase IMTG degradation during exercise, seven active men cycled for 180 min at 60% peak pulmonary O2 uptake either without (CON) or with (NA) prior ingestion of nicotinic acid to suppress adipose tissue lipolysis. Skeletal muscle and adipose tissue biopsy samples were obtained before and at 90 and 180 min of exercise. NA ingestion decreased ( P < 0.05) plasma FFA at rest and completely suppressed the exercise-induced increase in plasma FFA (180 min: CON, 1.42 ± 0.07; NA, 0.10 ± 0.01 mM). The decreased plasma FFA during NA was associated with decreased ( P < 0.05) adipose tissue hormone-sensitive lipase (HSL) activity (CON: 13.9 ± 2.5, NA: 9.1 ± 3.0 nmol·min−1·mg protein−1). NA ingestion resulted in decreased whole body fat oxidation and increased carbohydrate oxidation. Despite the decreased whole body fat oxidation, net IMTG degradation was greater in NA compared with CON (net change: CON, 2.3 ± 0.8; NA, 6.3 ± 1.2 mmol/kg dry mass). The increased IMTG degradation did not appear to be due to reduced fatty acid esterification, because glycerol 3-phosphate activity was not different between trials and was unaffected by exercise (rest: 0.21 ± 0.07; 180 min: 0.17 ± 0.04 nmol·min−1·mg protein−1). HSL activity was not increased from resting rates during exercise in either trial despite elevated plasma epinephrine, decreased plasma insulin, and increased ERK1/2 phosphorylation. AMP-activated protein kinase (AMPK)α1 activity was not affected by exercise or NA, whereas AMPKα2 activity was increased ( P < 0.05) from rest during exercise in NA and was greater ( P < 0.05) than in CON at 180 min. These data suggest that plasma FFA availability is an important mediator of net IMTG degradation, and in the absence of plasma FFA, IMTG degradation cannot maintain total fat oxidation. These changes in IMTG degradation appear to disassociate, however, from the activity of the key enzymes responsible for synthesis and degradation of this substrate.


2016 ◽  
Vol 36 (14) ◽  
pp. 1961-1976 ◽  
Author(s):  
Sun-Joong Kim ◽  
Tianyi Tang ◽  
Marcia Abbott ◽  
Jose A. Viscarra ◽  
Yuhui Wang ◽  
...  

The role of AMP-activated protein kinase (AMPK) in promoting fatty acid (FA) oxidation in various tissues, such as liver and muscle, has been well understood. However, the role of AMPK in lipolysis and FA metabolism in adipose tissue has been controversial. To investigate the role of AMPK in the regulation of adipose lipolysisin vivo, we generated mice with adipose-tissue-specific knockout of both the α1 and α2 catalytic subunits of AMPK (AMPK-ASKO mice) by using aP2-Cre and adiponectin-Cre. Both models of AMPK-ASKO ablation show no changes in desnutrin/ATGL levels but have defective phosphorylation of desnutrin/ATGL at S406 to decrease its triacylglycerol (TAG) hydrolase activity, lowering basal lipolysis in adipose tissue. These mice also show defective phosphorylation of hormone-sensitive lipase (HSL) at S565, with higher phosphorylation at protein kinase A sites S563 and S660, increasing its hydrolase activity and isoproterenol-stimulated lipolysis. With higher overall adipose lipolysis, both models of AMPK-ASKO mice are lean, having smaller adipocytes with lower TAG and higher intracellular free-FA levels. Moreover, FAs from higher lipolysis activate peroxisome proliferator-activated receptor delta to induce FA oxidative genes and increase FA oxidation and energy expenditure. Overall, for the first time, we providein vivoevidence of the role of AMPK in the phosphorylation and regulation of desnutrin/ATGL and HSL and thus adipose lipolysis.


2010 ◽  
Vol 299 (5) ◽  
pp. E832-E840 ◽  
Author(s):  
Emil Wolsk ◽  
Helene Mygind ◽  
Thomas S. Grøndahl ◽  
Bente K. Pedersen ◽  
Gerrit van Hall

Interleukin (IL)-6 is chronically elevated in type 2 diabetes but also during exercise. However, the exact metabolic role, and hence the physiological significance, has not been elucidated. The objective of this study was to investigate the in vivo effect of recombinant human (rh) IL-6 on human fat and glucose metabolism and signaling of both adipose tissue and skeletal muscle. Eight healthy postabsorptive males were infused with either rhIL-6 or saline for 4 h, eliciting IL-6 levels of ∼40 and ∼1 pg/ml, respectively. Systemic, skeletal muscle, and adipose tissue fat and glucose metabolism was assessed before, during, and 2 h after cessation of the infusion. Glucose metabolism was unaffected by rhIL-6. In contrast, rhIL-6 increased systemic fatty acid oxidation approximately twofold after 60 min, and it remained elevated even 2 h after the infusion. The increase in oxidation was followed by an increase in systemic lipolysis. Adipose tissue lipolysis and fatty acid kinetics were unchanged with rhIL-6 compared with saline infusion. Conversely, rhIL-6 infusion caused an increase in skeletal muscle unidirectional fatty acid and glycerol release, indicative of an increase in lipolysis. The increased lipolysis in muscle could account for the systemic changes. Skeletal muscle signaling increased after 1 h of rhIL-6 infusion, indicated by a fourfold increase in the phosphorylated signal transducer and activator of transcription (STAT) 3-to-STAT3 ratio, whereas no changes in phosphorylated AMP-activated protein kinase or acetyl-CoA carboxylase levels could be observed. Our findings suggest that an acute increase in IL-6 at a normophysiological level selectively stimulates lipolysis in skeletal muscle, whereas adipose tissue is unaffected.


2006 ◽  
Vol 290 (3) ◽  
pp. E500-E508 ◽  
Author(s):  
Matthew J. Watt ◽  
Anna G. Holmes ◽  
Srijan K. Pinnamaneni ◽  
Andrew P. Garnham ◽  
Gregory R. Steinberg ◽  
...  

Hormone-sensitive lipase (HSL) is important for the degradation of triacylglycerol in adipose and muscle tissue, but the tissue-specific regulation of this enzyme is not fully understood. We investigated the effects of adrenergic stimulation and AMPK activation in vitro and in circumstances where AMPK activity and catecholamines are physiologically elevated in humans in vivo (during physical exercise) on HSL activity and phosphorylation at Ser563 and Ser660, the PKA regulatory sites, and Ser565, the AMPK regulatory site. In human experiments, skeletal muscle, subcutaneous adipose and venous blood samples were obtained before, at 15 and 90 min during, and 120 min after exercise. Skeletal muscle HSL activity was increased by ∼80% at 15 min compared with rest and returned to resting rates at the cessation of and 120 min after exercise. Consistent with changes in plasma epinephrine, skeletal muscle HSL Ser563 and Ser660 phosphorylation were increased by 27% at 15 min ( P < 0.05), remained elevated at 90 min, and returned to preexercise values postexercise. Skeletal muscle HSL Ser565 phosphorylation and AMPK signaling were increased at 90 min during, and after, exercise. Phosphorylation of adipose tissue HSL paralleled changes in skeletal muscle in vivo, except HSL Ser660 was elevated 80% in adipose compared with 35% in skeletal muscle during exercise. Studies in L6 myotubes and 3T3-L1 adipocytes revealed important tissue differences in the regulation of HSL. AMPK inhibited epinephrine-induced HSL activity in L6 myotubes and was associated with reduced HSL Ser660 but not Ser563 phosphorylation. HSL activity was reduced in L6 myotubes expressing constitutively active AMPK, confirming the inhibitory effects of AMPK on HSL activity. Conversely, in 3T3-L1 adipocytes, AMPK activation after epinephrine stimulation did not prevent HSL activity or glycerol release, which coincided with maintenance of HSL Ser660 phosphorylation. Taken together, these data indicate that HSL activity is maintained in the face of AMPK activation as a result of elevated HSL Ser660 phosphorylation in adipose tissue but not skeletal muscle.


2010 ◽  
Vol 299 (1) ◽  
pp. R140-R149 ◽  
Author(s):  
Y. B. Shrestha ◽  
C. H. Vaughan ◽  
B. J. Smith ◽  
C. K. Song ◽  
D. J. Baro ◽  
...  

Norepinephrine (NE) released from the sympathetic nerves innervating white adipose tissue (WAT) is the principal initiator of lipolysis in mammals. Central WAT sympathetic outflow neurons express melanocortin 4-receptor (MC4-R) mRNA. Single central injection of melanotan II (MTII; MC3/4-R agonist) nonuniformly increases WAT NE turnover (NETO), increases interscapular brown adipose tissue (IBAT) NETO, and increases the circulating lipolytic products glycerol and free fatty acid. The WAT pads that contributed to this lipolysis were inferred from the increases in NETO. Because phosphorylation of perilipin A (p-perilipin A) and hormone-sensitive lipase are necessary for NE-triggered lipolysis, we tested whether MTII would increase these intracellular markers of lipolysis. Male Siberian hamsters received a single 3rd ventricular injection of MTII or saline. Trunk blood was collected at 0.5, 1.0, and 2.0 h postinjection from excised inguinal, retroperitoneal, and epididymal WAT (IWAT, RWAT, and EWAT, respectively) and IBAT pads. MTII increased circulating glycerol concentrations at 0.5 and 1.0 h, whereas free fatty acid concentrations were increased at 1.0 and 2.0 h. Western blot analysis showed that MTII specifically increased p-perilipin A and hormone-sensitive lipase only in fat pads that previously had MTII-induced increases in NETO. Phosphorylation increased in IWAT at all time points and IBAT at 0.5 h, but not RWAT or EWAT at any time point. These results show for the first time in rodents that p-perilipin A can serve as an in vivo, fat pad-specific indictor of lipolysis and extend our previous findings showing that central melanocortin stimulation increases WAT lipolysis.


2011 ◽  
Vol 301 (6) ◽  
pp. R1808-R1814 ◽  
Author(s):  
Martin Thomassen ◽  
Adam J. Rose ◽  
Thomas E. Jensen ◽  
Stine J. Maarbjerg ◽  
Laurids Bune ◽  
...  

Exercise-induced phosphorylation of FXYD1 is a potential important regulator of Na+-K+-pump activity. It was investigated whether skeletal muscle contractions induce phosphorylation of FXYD1 and whether protein kinase Cα (PKCα) activity is a prerequisite for this possible mechanism. In part 1, human muscle biopsies were obtained at rest, after 30 s of high-intensity exercise (166 ± 31% of V̇o2max) and after a subsequent 20 min of moderate-intensity exercise (79 ± 8% of V̇o2max). In general, FXYD1 phosphorylation was increased compared with rest both after 30 s ( P < 0.05) and 20 min ( P < 0.001), and more so after 20 min compared with 30 s ( P < 0.05). Specifically, FXYD1 ser63, ser68, and combined ser68 and thr69 phosphorylation were 26–45% higher ( P < 0.05) after 20 min of exercise than at rest. In part 2, FXYD1 phosphorylation was investigated in electrically stimulated soleus and EDL muscles from PKCα knockout (KO) and wild-type (WT) mice. Contractile activity caused FXYD1 ser68 phosphorylation to be increased ( P < 0.001) in WT soleus muscles but to be reduced ( P < 0.001) in WT extensor digitorum longus. In contrast, contractile activity did not affect FXYD1 ser68 phosphorylation in the KO mice. In conclusion, exercise induces FXYD1 phosphorylation at multiple sites in human skeletal muscle. In mouse muscles, contraction-induced changes in FXYD1 ser68 phosphorylation are fiber-type specific and dependent on PKCα activity.


2004 ◽  
Vol 287 (1) ◽  
pp. E150-E159 ◽  
Author(s):  
May Faraj ◽  
Katherine Cianflone

Acylation-stimulating protein (ASP) is a lipogenic hormone secreted by white adipose tissue (WAT). Male C3 knockout (KO; C3−/−) ASP-deficient mice have delayed postprandial triglyceride (TG) clearance and reduced WAT mass. The objective of this study was to examine the mechanism(s) by which ASP deficiency induces differences in postprandial TG clearance and body composition in male KO mice. Except for increased 3H-labeled nonesterified fatty acid (NEFA) trapping in brown adipose tissue (BAT) of KO mice ( P = 0.02), there were no intrinsic tissue differences between wild-type (WT) and KO mice in 3H-NEFA or [14C]glucose oxidation, TG synthesis or lipolysis in WAT, muscle, or liver. There were no differences in WAT or skeletal muscle hydrolysis, uptake, and storage of [3H]triolein substrate [in situ lipoprotein lipase (LPL) activity]. ASP, however, increased in situ LPL activity in WAT (+64.8%, P = 0.02) but decreased it in muscle (−35.0%, P = 0.0002). In addition, after prelabeling WAT with [3H]oleate and [14C]glucose, ASP increased 3H-lipid retention, [3H]TG synthesis, and [3H]TG-to-[14C]TG ratio, whereas it decreased 3H-NEFA release, indicating increased NEFA trapping in WAT. Conversely, in muscle, ASP induced effects opposite to those in WAT and increased lipolysis, indicating reduced NEFA trapping within muscle by ASP ( P < 0.05 for all parameters). In conclusion, novel data in this study suggest that 1) there is little intrinsic difference between KO and WT tissue in the parameters examined and 2) ASP differentially regulates in situ LPL activity and NEFA trapping in WAT and skeletal muscle, which may promote optimal insulin sensitivity in vivo.


2004 ◽  
Vol 63 (2) ◽  
pp. 315-322 ◽  
Author(s):  
Matthew J. Watt ◽  
Lawrence L. Spriet

Hormone-sensitive lipase (HSL) is believed to play a regulatory role in initiating the degradation of intramuscular triacylglycerol (IMTG) in skeletal muscle. A series of studies designed to characterise the response of HSL to three stimuli: exercise of varying intensities and durations; adrenaline infusions; altered fuel supply have recently been conducted in human skeletal muscle. In an attempt to understand the regulation of HSL activity the changes in the putative intramuscular and hormonal regulators of the enzyme have also been measured. In human skeletal muscle at rest there is a high constitutive level of HSL activity, which is not a function of biopsy freezing. The combination of low adrenaline and Ca2+levels and resting levels of insulin appear to dictate the level of HSL activity at rest. During the initial minute of low and moderate aerobic exercise HSL is activated by contractions in the apparent absence of increases in circulating adrenaline. During intense aerobic exercise, adrenaline may contribute to the early activation of HSL. The contraction-induced activation may be related to increased Ca2+and/or other unknown intramuscular activators. As low- and moderate-intensity exercise continues beyond a few minutes, activation by adrenaline through the cAMP cascade may also occur. With prolonged moderate-intensity exercise beyond 1–2 h and sustained high-intensity exercise, HSL activity decreases despite continuing increases in adrenaline, possibly as a result of increasing accumulations of free AMP, activation of AMP kinase and phosphorylation of inhibitory sites on HSL. The existing work in human skeletal muscle also suggests that there are numerous levels of control involved in the regulation of IMTG degradation, with control points downstream from HSL also being important. For example, it must be remembered that the actual flux (IMTG degradation) through HSL may be allosterically inhibited during prolonged exercise as a result of the accumulation of long-chain fatty acyl-CoA.


Sign in / Sign up

Export Citation Format

Share Document