Parametric finite element analysis of a glass fibre reinforced polymer (GFRP) deck-to-girder connection for bridges

2006 ◽  
Vol 33 (3) ◽  
pp. 245-254 ◽  
Author(s):  
Ki-Tae Park ◽  
Sang-Hyo Kim ◽  
Hyeong-Yeol Kim ◽  
Sun-Myung Kim

This paper presents a new method for deck-to-girder connections of glass fibre reinforced polymer (GFRP) bridge decks. To design the connection system, a GFRP deck in a rectangular cross-sectional shape is considered. The size of the shear bolts, bolt location, bolt spacing, and the size and type of stiffening plate are the variables considered in the design. The behavior of the proposed deck-to-girder connection system was analysed using commercial finite element analysis software. The failure of the connection system was checked by the Tsai–Hill criterion. Effective deck-to-girder connection details for GFRP bridge decks are identified and presented based on the results of the analysis.Key words: bridge decks, glass fibres, bolted connections, pultrusion.

2017 ◽  
Vol 52 (13) ◽  
pp. 1747-1764 ◽  
Author(s):  
Hassan Abdolpour ◽  
Julio Garzón-Roca ◽  
Gonçalo Escusa ◽  
José M Sena-Cruz ◽  
Joaquim AO Barros ◽  
...  

The present paper explores a new modular floor prototype to be used in emergency houses. The prototype is composed of a frame structure made of glass-fibre-reinforced polymer tubular pultruded profiles, a slab made of sandwich panels with a polyurethane foam core and glass-fibre-reinforced polymer skins, and a tailored connection system that provides integrity between assembled components. A series of experimental tests are carried out including flexural tests on a single panel, on two and three connected panels, and on the assembled floor prototype. The behaviour of the panels is analysed when they are not considered part of the glass-fibre-reinforced polymer framed structure, namely the failure mechanisms and the efficiency of the proposed connection system between the panels. The performance of the floor prototype to support typical load conditions of residential houses is also assessed. Additionally, an analytical model was used to deeper study the behaviour of the developed sandwich panels, connection system and the modular floor prototype.


2013 ◽  
Vol 40 (11) ◽  
pp. 1140-1149 ◽  
Author(s):  
Ramin Rameshni ◽  
Stefano Arcovio ◽  
Mark Green ◽  
Colin MacDougall

This study investigates, experimentally and using finite element analysis, the adhesive bond between glass fibre-reinforced polymer (GFRP) and steel. Seventeen double-shear lap-splice were fabricated and tested in tension. The results show that the methacrylate adhesive used had higher bond strengths than the epoxy adhesive. A finite element model for selected test specimens was developed to analyze the stress within the adhesive. The model was verified by comparison with strain data from the shear lap-splice tests. The model was used to determine the maximum principal stress in the epoxy adhesive and the maximum shear strain in the methacrylate adhesive at failure, and thus quantify the characteristic strength of these adhesives. It was shown that the ductility of the methacrylate adhesive allowed it to yield at locations of stress concentrations, providing higher splice capacity, despite having a lower nominal shear strength as compared with the epoxy adhesive.


2014 ◽  
Vol 564 ◽  
pp. 428-433 ◽  
Author(s):  
S.N.A. Safri ◽  
Mohamed Thariq Hameed Sultan ◽  
N. Razali ◽  
Shahnor Basri ◽  
Noorfaizal Yidris ◽  
...  

The purpose of this work is to study the best number of layer with the higher impact energy using Glass Fibre Reinforced Polymer (GFRP). The number of layers used in this study was 25, 33, 41, and 49. The impact test was performed using Single Stage Gas Gun (SSGG) for each layers given above with different bullets such as blunt, hemispherical and conical bullets. The gas gun pressure was set to 5, 10, 15 and 20 bar. All of the signals captured from the impact test were recorded using a ballistic data acquisition system. The correlation between the impact energy in terms of number of layer and type of bullet from this test are presented and discussed. It can be summarise that as the number of layer increases, impact energy also increases. In addition, from the results, it was observed that by using different types of bullets (blunt, hemispherical, conical), there is only a slight difference in values of energy absorbed by the specimen.


2014 ◽  
Vol 970 ◽  
pp. 317-319 ◽  
Author(s):  
Syed Mohd Saiful Azwan ◽  
Yahya Mohd Yazid ◽  
Ayob Amran ◽  
Behzad Abdi

Fibre reinforced polymer (FRP) plates subject to quasi-static indentation loading were studied. The plates were fabricated from three layers of chopped strand mat glass fibre and polyester resin using vacuum infusion process. Indentation tests were conducted on the plates with loading rates of 1 mm/min, 10 mm/min, 100 mm/min and 500 mm/min using a hemispherical tip indenter with diameter 12.5 mm. The plates were clamped in a square fixture with an unsupported space of 100 mm × 100 mm. The loads and deflections at the indented location were measured to give energy absorption-deflection curves. The results showed that the loading rate has a large effect on the indentation behaviour and energy absorbed.


Sign in / Sign up

Export Citation Format

Share Document