Evaluation of dam overtopping risk based on univariate and bivariate flood frequency analyses

2012 ◽  
Vol 39 (4) ◽  
pp. 374-387 ◽  
Author(s):  
Ehsan Goodarzi ◽  
Majid Mirzaei ◽  
Mina Ziaei

There is a growing tendency to assess safety of dams by mathematical and statistical methods in hydrosystem engineering. This research presents the application of risk and uncertainty analysis to dam overtopping based on univariate and bivariate flood frequency analyses by applying Gumbel logistic distribution. The bivariate frequency analyses produced six inflow hydrographs with a joint return period of 100 years. Afterward, the overtopping risk of the Doroudzan Dam was evaluated for all six inflow hydrographs by considering quantile of flood peak discharge, initial depth of water in the reservoir, and discharge coefficient of spillway as uncertain variables and using two uncertainty analysis methods; Monte Carlo simulation and Latin hypercube sampling. Finally, the results of both univariate and bivariate frequency analyses were compared to show the significance of bivariate analysis on dam overtopping.

2011 ◽  
Vol 8 (6) ◽  
pp. 9757-9796 ◽  
Author(s):  
E. Goodarzi ◽  
M. Mirzaei ◽  
L. T. Shui ◽  
M. Ziaei

Abstract. There is a growing tendency to assess the safety levels of existing dams based on risk and uncertainty analysis using mathematical and statistical methods. This research presents the application of risk and uncertainty analysis to dam overtopping based on univariate and bivariate flood frequency analyses by applying Gumbel logistic distribution for the Doroudzan earth-fill dam in south of Iran. The bivariate frequency analysis resulted in six inflow hydrographs with a joint return period of 100-yr. The overtopping risks were computed for all of those hydrographs considering quantile of flood peak discharge (in particular 100-yr), initial depth of water in the reservoir, and discharge coefficient of spillway as uncertain variables. The maximum height of the water, as most important factor in the overtopping analysis, was evaluated using reservoir routing and the Monte Carlo and Latin hypercube techniques were applied for uncertainty analysis. Finally, the achieved results using both univariate and bivariate frequency analysis have been compared to show the significance of bivariate analyses on dam overtopping.


2006 ◽  
Vol 10 (2) ◽  
pp. 233-243 ◽  
Author(s):  
E. Gaume

Abstract. This paper presents some analytical results and numerical illustrations on the asymptotic properties of flood peak distributions obtained through derived flood frequency approaches. It confirms and extends the results of previous works: i.e. the shape of the flood peak distributions are asymptotically controlled by the rainfall statistical properties, given limited and reasonable assumptions concerning the rainfall-runoff process. This result is partial so far: the impact of the rainfall spatial heterogeneity has not been studied for instance. From a practical point of view, it provides a general framework for analysis of the outcomes of previous works based on derived flood frequency approaches and leads to some proposals for the estimation of very large return-period flood quantiles. This paper, focussed on asymptotic distribution properties, does not propose any new approach for the extrapolation of flood frequency distribution to estimate intermediate return period flood quantiles. Nevertheless, the large distance between frequent flood peak values and the asymptotic values as well as the simulations conducted in this paper help quantifying the ill condition of the problem of flood frequency distribution extrapolation: it illustrates how large the range of possibilities for the shapes of flood peak distributions is.


2018 ◽  
Vol 32 (13) ◽  
pp. 4239-4252 ◽  
Author(s):  
Jianzhu Li ◽  
Yuming Lei ◽  
Senming Tan ◽  
Colin D. Bell ◽  
Bernard A. Engel ◽  
...  

Author(s):  
Debabrata Datta

Uncertainty analysis of any physical model is always an essential task from the point of decision making analysis. Two kinds of uncertainties exist: (1) aleatory uncertainty which is due to randomness of the parameters of models of interest and (2) the epistemic uncertainty which is due to fuzziness of the parameters of the same models. So far both these uncertainties are addressed independently; however since in any practical problem both the types of uncertain variables present, it is required to address them jointly. In order to solve practical problems on uncertainty modeling, it is required to replace the abstract definition of hybrid set by fuzzy random set. Since uncertainty modeling using fuzzy random set has not been carried out so far, the present chapter will address the utility of fuzzy random set for uncertainty modeling on geotechnical and hydrological applications. This chapter will present the fundamentals of fuzzy random set and their application in uncertainty analysis.


2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Changjiang Xu ◽  
Jiabo Yin ◽  
Shenglian Guo ◽  
Zhangjun Liu ◽  
Xingjun Hong

Design flood hydrograph (DFH) for a dam is the flood of suitable probability and magnitude adopted to ensure safety of the dam in accordance with appropriate design standards. Estimated quantiles of peak discharge and flood volumes are necessary for deriving the DFH, which are mutually correlated and need to be described by multivariate analysis methods. The joint probability distributions of peak discharge and flood volumes were established using copula functions. Then the general formulae of conditional most likely composition (CMLC) and conditional expectation composition (CEC) methods that consider the inherent relationship between flood peak and volumes were derived for estimating DFH. The Danjiangkou reservoir in Hanjiang basin was selected as a case study. The design values of flood volumes and 90% confidence intervals with different peak discharges were estimated by the proposed methods. The performance of CMLC and CEC methods was also compared with conventional flood frequency analysis, and the results show that CMLC method performs best for both bivariate and trivariate distributions which has the smallest relative error and root mean square error. The proposed CMLC method has strong statistical basis with unique design flood composition scheme and provides an alternative way for deriving DFH.


2015 ◽  
Vol 19 (10) ◽  
pp. 4307-4315 ◽  
Author(s):  
L. Elleder

Abstract. This study presents a flood frequency analysis for the Vltava River catchment using a major profile in Prague. The estimates of peak discharges for the pre-instrumental period of 1118–1824 based on documentary sources were carried out using different approaches. 187 flood peak discharges derived for the pre-instrumental period augmented 150 records for the instrumental period of 1825–2013. Flood selection was based on Q10 criteria. Six flood-rich periods in total were identified for 1118–2013. Results of this study correspond with similar studies published earlier for some central European catchments, except for the period around 1750. Presented results indicate that the territory of the present Czech Republic might have experienced extreme floods in the past, comparable – with regard to peak discharge (higher than or equal to Q10) and frequency – to the flood events recorded recently.


2008 ◽  
Vol 35 (10) ◽  
pp. 1177-1182 ◽  
Author(s):  
A. Melih Yanmaz ◽  
M. Engin Gunindi

There is a growing tendency to assess safety levels of existing dams and to design new dams using probabilistic approaches according to project characteristics and site-specific conditions. This study is a probabilistic assessment of the overtopping reliability of a dam, which will be designed for flood detention purpose, and will compute the benefits that can be gained as a result of the implementation of this dam. In a case study, a bivariate flood frequency analysis was carried out using a five-parameter bivariate gamma distribution. A family of joint return period curves relating the runoff peak discharges to the runoff volumes at the dam site was derived. A number of hydrographs were also obtained under a joint return period of 100 years to observe the variation of overtopping tendency. The maximum reservoir elevation and overtopping reliability were determined by performing a probabilistic reservoir routing based on Monte Carlo simulations.


Author(s):  
Hiroto Itoh ◽  
Xiaoyu Zheng ◽  
Hitoshi Tamaki ◽  
Yu Maruyama

The influence of the in-vessel melt progression on the uncertainty of source terms was examined in the uncertainty analysis with integral severe accident analysis code MELCOR (Ver. 1.8.5), taking the accident at Unit 2 of the Fukushima Daiichi nuclear power plant as an example. The 32 parameters selected from the rough screening analysis were sampled by Latin hypercube sampling technique in accordance with the uncertainty distributions specified for each parameter. The uncertainty distributions of the outputs, including the source terms of the representative radioactive materials (Cs, CsI, Te and Ba), the total mass of in-vessel H2 generation and the total debris mass released from the reactor pressure vessel to the drywell, were obtained through the uncertainty analysis with an assumption of the failure of drywell. Based on various types of correlation coefficient for each parameter, 9 significant uncertain parameters potentially dominating the source terms were identified. These 9 parameters were transferred to the subsequent sensitivity and uncertainty analyses, in which the influence of the transportation of radioactive materials was taken into account.


2021 ◽  
Author(s):  
Anne Bartens ◽  
Uwe Haberlandt

Abstract. In many cases flood frequency analysis needs to be carried out on mean daily flow (MDF) series without any available information on the instantaneous peak flow (IPF). We analyze the error of using MDFs instead of IPFs for flood quantile estimation on a German dataset and assess spatial patterns and factors that influence the deviation of MDF floods from their IPF counterparts. The main dependence could be found for catchment area but also gauge elevation appeared to have some influence. Based on the findings we propose simple linear models to correct both MDF flood peaks of individual flood events and overall MDF flood statistics. Key predictor in the models is the event-based ratio of flood peak and flood volume obtained directly from the daily flow records. This correction approach requires a minimum of data input, is easily applied, valid for the entire study area and successfully estimates IPF peaks and flood statistics. The models perform particularly well in smaller catchments, where other IPF estimation methods fall short. Still, the limit of the approach is reached for catchment sizes below 100 km2, where the hydrograph information from the daily series is no longer capable of approximating instantaneous flood dynamics.


Sign in / Sign up

Export Citation Format

Share Document