IMMUNE RESPONSES OF SOME INSECTS TO SOME BACTERIAL ANTIGENS

1959 ◽  
Vol 5 (2) ◽  
pp. 203-228 ◽  
Author(s):  
June M. Stephens

Pseudomonas aeruginosa (Schroeter) Migula antigen remained in the blood of larvae of the wax moth, Galleria mellonella (L.), during the resistant period of the insect. Bacterial antigen present in the immune blood produces agglutinating titers in rabbits about 10 times as great as those produced by an approximately equal volume of standard P. aeruginosa vaccine. Attempts to demonstrate the mechanism that enhances the antigen showed that the active portion was contained in the serum, that the action occurred within several hours in vivo and only reached the same level after 3 days in vitro mixture, and that the action was probably not caused by lysis of the bacterial cells and the consequent liberation of more antigen in the blood. Electrophoretic studies on the blood mixture indicated that the altered or enhanced antigen may be bound to a blood fraction, the exact nature of which was not determined. The larvae were actively or passively immunized against lethal doses of P. aeruginosa within 20 to 24 hours. Concentration of vaccine had little effect upon the degree of immunity conferred upon the larvae. The immunity lasted about three days and was more specific than nonspecific. The larvae were not actively protected against P. aeruginosa by introduction of albuminous foreign material into the body cavity. True antibodies were not detectable in the immune blood though the bactericidal action of immune blood was at least twice as great as that of normal blood. Preliminary investigations on immune responses of other lepidopterous insects to P. aeruginosa antigen and of the wax moth to antigens of some other Gram-negative bacteria indicated similar results.

1946 ◽  
Vol 23 (1) ◽  
pp. 47-70 ◽  
Author(s):  
J. D. SMYTH

A technique has been elaborated that enabled the plerocercoid larvae of Schistocephalus solidus to be removed from the body cavity of Gasterosteus aculeatus without bacterial contamination. Larvae were cultured in plugged test-tubes under completely aseptic conditions in a variety of balanced salines, glucose salines and nutrient peptone broth. The most successful results were obtained with peptone broth at room temperatures (16-19° C) in which plerocercoids remained active and showed normal behaviour for periods up to 300 days. In ¾ strength Locke's solution, which was found by experiment to be approximately isotonic with Schistocephalus (δ = -0.44 ± 0.02° C), the mean period of normal behaviour was 114 days. In the remaining saline and saline-glucose media, the mean viability and period of normal behaviour was considerably less. In the plerocercoid, histological examination revealed that the genitalia are in an immature condition. During cultivation at room temperatures, the genitalia remained in this undifferentiated condition and showed no signs of undergoing spermatogenesis, oogenesis or vitellogenesis. Plerocercoids were induced to develop into sexually mature adults by raising the temperature of cultivation in peptone broth to 40° C. (i.e. the body temperature of the final host in the natural life cycle). Oviposition took place after 48-60 hr. at this temperature, and histological examination revealed that spermatogenesis, oogenesis, vitellogenesis and shell formation had taken place in a normal manner. The viability of artificially matured Schistocephalus was 4-6 days in vitro--a period equivalent to the viability of the adult in vivo. The eversion of the cirris was observed in each proglottid after 40 hr. cultivation at 40° C. During the sexual process the cirris everted and invaginated at the rate of about once per second. Cross-fertilization between segments of the same worm or with segments of another worm was not observed. Except for one specimen in ¾ strength Locke's solution which underwent spermatogenesis and partial vitellogenesis, larvae cultured in salines or glucose salines at 40° C. died within 1-3 days without further development. Attempts to hatch out the eggs produced by the cultivation of larvae in peptone broth at 40° C. proved unsuccessful. Histological examination revealed that spermatozoa had not been taken into the vagina. It was concluded that the eggs were not fertilized owing to the failure of normal copulation to take place.


Author(s):  
М. G. Markova ◽  
Е. N. Somova

Work on the clonal micropropagation of strawberries comes down to the search for new growth regulators, which include a biologically active substance - the waste product of the wax moth Galleria mellonella L. The effect of the waste product of the wax moth on the efficiency of clonal micropropagation of strawberries (Fragaria х ananassa duch) in vitro and in vivo conditions in 2018-2020 is shown. The object of research is micro-cuttings, rooted micro-cuttings and adapted micro-plants of garden strawberries of the Korona variety and of the remontant strawberries of the Brighton variety. It was revealed that at the proliferation stage, the propagation coefficient of the Korona variety increased significantly with the introduction of the waste product of the wax moth in doses of 4.0 mg/L and 6.0 mg/L and amounted to 4.2 and 3.8 pcs./explant, respectively; for Brighton variety, the coefficient increased significantly when the dose of the waste product of the wax moth 2.0 mg/L and amounted to 4.6 pcs./explant. The introduction of the waste product of the wax moth in doses of 4.0 mg/L and 6.0 mg/L into the nutrient medium had a significant effect on the yield of Brighton micro-cuttings suitable for rooting: the yield was 95.5 and 94.1%, respectively 87.7% in the control. For the Korona variety, no significant positive effect of the waste product of the wax moth on this indicator was noted. The rooting of micro-cuttings of strawberries of both varieties significantly increased with the introduction of the waste product of the wax moth into the nutrient medium in all studied doses and amounted to 86.4-100% in the Korona variety, and 88.9-100% in the Brighton variety.  The survival rate of adaptable micro-cuttings of Corona variety strawberries when sprayed with an aqueous solution of the waste product of the wax moth at a dose of 4.0 mg/L was 100%; the maximum survival rate of micro-cuttings Brighton variety is 99.8% in the variant with spraying with an aqueous solution of the waste product of the wax moth at a dose of 6.0 mg/L.


2018 ◽  
Author(s):  
Razvan C. Stan ◽  
Katia S. Françoso ◽  
Rubens P.S. Alves ◽  
Luís Carlos S. Ferreira ◽  
Irene S. Soares ◽  
...  

AbstractFever is a regulated elevation in the body setpoint temperature and may arise as a result of infectious and noninfectious causes. While beneficial in modulating immune responses to infection, the potential of febrile temperatures in regulating antigen binding affinity to antibodies has not been explored. We have investigated this process under in vitro conditions using selected malaria or dengue antigens and specific monoclonal antibodies, and observed a marked increase in the affinity of these antibody-antigen complexes at 40°C, compared to physiological (37°C) or pathophysiological temperatures (42°C). Induced thermal equilibration of the protein partners at these temperatures, prior to measurements, further increased their binding affinity. These results may indicate an unexpected beneficial and adaptive role for fever in vivo, and highlight the positive role of thermal priming in enhancing protein-protein affinity for samples of scarce availability.


2005 ◽  
Vol 73 (7) ◽  
pp. 3842-3850 ◽  
Author(s):  
Eleftherios Mylonakis ◽  
Roberto Moreno ◽  
Joseph B. El Khoury ◽  
Alexander Idnurm ◽  
Joseph Heitman ◽  
...  

ABSTRACT Evaluation of Cryptococcus neoformans virulence in a number of nonmammalian hosts suggests that C. neoformans is a nonspecific pathogen. We used the killing of Galleria mellonella (the greater wax moth) caterpillar by C. neoformans to develop an invertebrate host model system that can be used to study cryptococcal virulence, host immune responses to infection, and the effects of antifungal compounds. All varieties of C. neoformans killed G. mellonella. After injection into the insect hemocoel, C. neoformans proliferated and, despite successful phagocytosis by host hemocytes, killed caterpillars both at 37°C and 30°C. The rate and extent of killing depended on the cryptococcal strain and the number of fungal cells injected. The sequenced C. neoformans clinical strain H99 was the most virulent of the strains tested and killed caterpillars with inocula as low as 20 CFU/caterpillar. Several C. neoformans genes previously shown to be involved in mammalian virulence (CAP59, GPA1, RAS1, and PKA1) also played a role in G. mellonella killing. Combination antifungal therapy (amphotericin B plus flucytosine) administered before or after inoculation was more effective than monotherapy in prolonging survival and in decreasing the tissue burden of cryptococci in the hemocoel. The G. mellonella-C. neoformans pathogenicity model may be a substitute for mammalian models of infection with C. neoformans and may facilitate the in vivo study of fungal virulence and efficacy of antifungal therapies.


1935 ◽  
Vol 26 (3) ◽  
pp. 283-288 ◽  
Author(s):  
M. Pilat

The question of the effect of poisons on the blood of insects is a new one in entomo-toxicological literature. In a series of works by Metalnikov (1908, 1924, 1927) we have a study of the reaction of the blood of the larva of the Wax Moth (Galleria mellonella) in consequence of an injection into the body cavity of various substances and morbiferous microbes. The paper by Mrs. Tareeva and Nenyukov (1931) describes, very briefly and in general features, the picture of the blood of Calliptamus italicus in the case of poisoning by means of sodium arsenate or sodium fluoride.


2012 ◽  
Vol 82 (3) ◽  
pp. 228-232 ◽  
Author(s):  
Mauro Serafini ◽  
Giuseppa Morabito

Dietary polyphenols have been shown to scavenge free radicals, modulating cellular redox transcription factors in different in vitro and ex vivo models. Dietary intervention studies have shown that consumption of plant foods modulates plasma Non-Enzymatic Antioxidant Capacity (NEAC), a biomarker of the endogenous antioxidant network, in human subjects. However, the identification of the molecules responsible for this effect are yet to be obtained and evidences of an antioxidant in vivo action of polyphenols are conflicting. There is a clear discrepancy between polyphenols (PP) concentration in body fluids and the extent of increase of plasma NEAC. The low degree of absorption and the extensive metabolism of PP within the body have raised questions about their contribution to the endogenous antioxidant network. This work will discuss the role of polyphenols from galenic preparation, food extracts, and selected dietary sources as modulators of plasma NEAC in humans.


Author(s):  
А.А. Раецкая ◽  
С.В. Калиш ◽  
С.В. Лямина ◽  
Е.В. Малышева ◽  
О.П. Буданова ◽  
...  

Цель исследования. Доказательство гипотезы, что репрограммированные in vitro на М3 фенотип макрофаги при введении в организм будут существенно ограничивать развитие солидной карциномы in vivo . Методика. Рост солидной опухоли инициировали у мышей in vivo путем подкожной инъекции клеток карциномы Эрлиха (КЭ). Инъекцию макрофагов с нативным М0 фенотипом и с репрограммированным M3 фенотипом проводили в область формирования солидной КЭ. Репрограммирование проводили с помощью низких доз сыворотки, блокаторов факторов транскрипции STAT3/6 и SMAD3 и липополисахарида. Использовали две схемы введения макрофагов: раннее и позднее. При раннем введении макрофаги вводили на 1-е, 5-е, 10-е и 15-е сут. после инъекции клеток КЭ путем обкалывания макрофагами с четырех сторон область развития опухоли. При позднем введении, макрофаги вводили на 10-е, 15-е, 20-е и 25-е сут. Через 15 и 30 сут. после введения клеток КЭ солидную опухоль иссекали и измеряли ее объем. Эффект введения макрофагов оценивали качественно по визуальной и пальпаторной характеристикам солидной опухоли и количественно по изменению ее объема по сравнению с группой без введения макрофагов (контроль). Результаты. Установлено, что M3 макрофаги при раннем введении от начала развития опухоли оказывают выраженный антиопухолевый эффект in vivo , который был существенно более выражен, чем при позднем введении макрофагов. Заключение. Установлено, что введение репрограммированных макрофагов M3 ограничивает развитие солидной карциномы в экспериментах in vivo . Противоопухолевый эффект более выражен при раннем введении М3 макрофагов. Обнаруженные в работе факты делают перспективным разработку клинической версии биотехнологии ограничения роста опухоли, путем предварительного программирования антиопухолевого врожденного иммунного ответа «в пробирке». Aim. To verify a hypothesis that macrophages reprogrammed in vitro to the M3 phenotype and injected into the body substantially restrict the development of solid carcinoma in vivo . Methods. Growth of a solid tumor was initiated in mice in vivo with a subcutaneous injection of Ehrlich carcinoma (EC) cells. Macrophages with a native M0 phenotype or reprogrammed towards the M3 phenotype were injected into the region of developing solid EC. Reprogramming was performed using low doses of serum, STAT3/6 and SMAD3 transcription factor blockers, and lipopolysaccharide. Two schemes of macrophage administration were used: early and late. With the early administration, macrophages were injected on days 1, 5, 10, and 15 following the injection of EC cells at four sides of the tumor development area. With the late administration, macrophages were injected on days 10, 15, 20, and 25. At 15 and 30 days after the EC cell injection, the solid tumor was excised and its volume was measured. The effect of macrophage administration was assessed both qualitatively by visual and palpation characteristics of solid tumor and quantitatively by changes in the tumor volume compared with the group without the macrophage treatment. Results. M3 macrophages administered early after the onset of tumor development exerted a pronounced antitumor effect in vivo , which was significantly greater than the antitumor effect of the late administration of M3 macrophages. Conclusion. The observed significant inhibition of in vivo growth of solid carcinoma by M3 macrophages makes promising the development of a clinical version of the biotechnology for restriction of tumor growth by in vitro pre-programming of the antitumor, innate immune response.


2020 ◽  
Vol 26 (45) ◽  
pp. 5783-5792
Author(s):  
Kholood Abid Janjua ◽  
Adeeb Shehzad ◽  
Raheem Shahzad ◽  
Salman Ul Islam ◽  
Mazhar Ul Islam

There is compelling evidence that drug molecules isolated from natural sources are hindered by low systemic bioavailability, poor absorption, and rapid elimination from the human body. Novel approaches are urgently needed that could enhance the retention time as well as the efficacy of natural products in the body. Among the various adopted approaches to meet this ever-increasing demand, nanoformulations show the most fascinating way of improving the bioavailability of dietary phytochemicals through modifying their pharmacokinetics and pharmacodynamics. Curcumin, a yellowish pigment isolated from dried ground rhizomes of turmeric, exhibits tremendous pharmacological effects, including anticancer activities. Several in vitro and in vivo studies have shown that curcumin mediates anticancer effects through the modulation (upregulation and/or downregulations) of several intracellular signaling pathways both at protein and mRNA levels. Scientists have introduced multiple modern techniques and novel dosage forms for enhancing the delivery, bioavailability, and efficacy of curcumin in the treatment of various malignancies. These novel dosage forms include nanoparticles, liposomes, micelles, phospholipids, and curcumin-encapsulated polymer nanoparticles. Nanocurcumin has shown improved anticancer effects compared to conventional curcumin formulations. This review discusses the underlying molecular mechanism of various nanoformulations of curcumin for the treatment of different cancers. We hope that this study will make a road map for preclinical and clinical investigations of cancer and recommend nano curcumin as a drug of choice for cancer therapy.


2020 ◽  
Vol 8 (10) ◽  
pp. 1627
Author(s):  
Tecla Ciociola ◽  
Pier Paolo Zanello ◽  
Tiziana D’Adda ◽  
Serena Galati ◽  
Stefania Conti ◽  
...  

The growing problem of antimicrobial resistance highlights the need for alternative strategies to combat infections. From this perspective, there is a considerable interest in natural molecules obtained from different sources, which are shown to be active against microorganisms, either alone or in association with conventional drugs. In this paper, peptides with the same sequence of fragments, found in human serum, derived from physiological proteins, were evaluated for their antifungal activity. A 13-residue peptide, representing the 597–609 fragment within the albumin C-terminus, was proved to exert a fungicidal activity in vitro against pathogenic yeasts and a therapeutic effect in vivo in the experimental model of candidal infection in Galleria mellonella. Studies by confocal microscopy and transmission and scanning electron microscopy demonstrated that the peptide penetrates and accumulates in Candida albicans cells, causing gross morphological alterations in cellular structure. These findings add albumin to the group of proteins, which already includes hemoglobin and antibodies, that could give rise to cryptic antimicrobial fragments, and could suggest their role in anti-infective homeostasis. The study of bioactive fragments from serum proteins could open interesting perspectives for the development of new antimicrobial molecules derived by natural sources.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 819
Author(s):  
Nicolai Rügen ◽  
Timothy P. Jenkins ◽  
Natalie Wielsch ◽  
Heiko Vogel ◽  
Benjamin-Florian Hempel ◽  
...  

Assassin bug venoms are potent and exert diverse biological functions, making them potential biomedical goldmines. Besides feeding functions on arthropods, assassin bugs also use their venom for defense purposes causing localized and systemic reactions in vertebrates. However, assassin bug venoms remain poorly characterized. We collected the venom from the assassin bug Rhynocoris iracundus and investigated its composition and bioactivity in vitro and in vivo. It caused lysis of murine neuroblastoma, hepatoma cells, and healthy murine myoblasts. We demonstrated, for the first time, that assassin bug venom induces neurolysis and suggest that it counteracts paralysis locally via the destruction of neural networks, contributing to tissue digestion. Furthermore, the venom caused paralysis and melanization of Galleria mellonella larvae and pupae, whilst also possessing specific antibacterial activity against Escherichia coli, but not Listeria grayi and Pseudomonas aeruginosa. A combinatorial proteo-transcriptomic approach was performed to identify potential toxins responsible for the observed effects. We identified neurotoxic Ptu1, an inhibitory cystin knot (ICK) toxin homologous to ω-conotoxins from cone snails, cytolytic redulysins homologous to trialysins from hematophagous kissing bugs, and pore-forming hemolysins. Additionally, chitinases and kininogens were found and may be responsible for insecticidal and cytolytic activities. We demonstrate the multifunctionality and complexity of assassin bug venom, which renders its molecular components interesting for potential biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document