Bacterial growth in refrigerated, vacuum-packed luncheon meats

1970 ◽  
Vol 16 (5) ◽  
pp. 287-297 ◽  
Author(s):  
A. G. Kempton ◽  
S. R. Bobier

The shelf life of vacuum-packed luncheon meats during refrigerated storage was not related to "total" counts since the only organisms that multiplied in this environment were lactic acid bacteria, which formed only a small proportion of the initial population.Bacterial growth curves obtained from several Canadian products were remarkably similar, but the spoilage patterns differed. For example, wiener spoilage was a function of bacterial growth while bologna spoiled from the accumulation of bacterial end products. After 15 weeks at 5 °C, the meats contained 0.6 to 0.8% lactic acid and the pH of comminuted meats dropped below 5.0. Cooked ham contained much less carbohydrate than comminuted meats, and the pH remained above 6.0. Under these conditions, ham is susceptible to putrefaction although this was not observed during this study.It was found that cooking can eliminate all lactic acid bacteria present in the raw meats but the products become recontaminated during slicing and packaging. The cleaning and sanitizing procedure used by the Company that cooperated in this study was efficient, but it was recommended that the packaging room be cleaned more often, and that a selective medium for lactic acid bacteria be used in sanitation surveys.

2004 ◽  
Vol 67 (3) ◽  
pp. 601-606 ◽  
Author(s):  
RENATA CEGIELSKA-RADZIEJEWSKA ◽  
JAN PIKUL

The aim of this study was to determine the effect of sodium lactate addition on shelf-life extension of sliced poultry sausage packaged both in air and nitrogen atmospheres and stored in refrigerated conditions. Basic chemical composition, pH, and malonaldehyde content were assayed and color measurement using the reflection method was carried out. Microbiological examination consisted of determination of total number of aerobic psychrotrophic bacteria and number of lactic acid bacteria. Sensory evaluation of products was performed. Microbiological and sensory quality of sliced poultry meat sausage was dependent on the addition during production of sodium lactate and the composition of gases (air or nitrogen) used in packaging. Slices of poultry sausage with 1% as well as 2% of sodium lactate maintained their initial quality of evaluated sensory attributes longer, irrespective of the applied gases. Sodium lactate inhibited growth of aerobic psychrotrophic bacteria and lactic acid bacteria during refrigerated storage. Sodium lactate also inhibited the formation of malonaldehyde in sliced poultry sausage during refrigerated storage. The effectiveness of this process depended on the concentration of sodium lactate addition. It was concluded that 1% as well as 2% addition of sodium lactate could extend the shelf life of sliced poultry sausage packaged in air atmosphere and stored at 5 to 7°C by 3 or 4 times, respectively. Sliced poultry sausage treated with 2% sodium lactate packed in nitrogen had the longest (35-day) shelf life. This was a sevenfold increase in the shelf life of sliced poultry sausage compared with the control.


2020 ◽  
Vol 4 (2) ◽  
pp. 16-22
Author(s):  
Ani Sulastri ◽  
Baso Manguntungi

The limited shelf life in a food requires a natural preservative so that the food used is not easily damaged and has a longer shelf life, namely by using lactic acid bacteria (BAL) using alternative media. By using lactic acid bacteria, the time in the storage period food products can be extended. The purpose of this study was to determine the viability of the Lactobacillus lactis bacteria on an alternative growth base media and a media on the media of bacteria. Lactic acid bacteria were rejuvenated and culture propagation of 5 ?l was inoculated into 5 mL of MRSB media. Formulation media used for bacterial growth such as whey tofu + 5% sucrose + 1% urea. The alternative media was incubated for 24 hours. Bacterial growth was observed at 0, 4, 8 and 16 hours using the TPC (Total Plate count) method. Various media Lactobacillus lactis bacterial deposition was grown on MRSB media and dried with freeze dry for 48 hours and the viability of Lactobacillus lactis was tested. The basic growth media that can be used are Lactobacillus lactis bacteria, namely whey tofu + sucrose 5% + urea 1% as well as Lactobacillus lactis viability results in various media which are grown on MRS media and various alternative media shows that the media has a 100% carrageenan composition able to maintain the viability of Lactobacillus lactis cells.


2010 ◽  
Vol 108 (2) ◽  
pp. 510-520 ◽  
Author(s):  
J. Kreyenschmidt ◽  
A. Hübner ◽  
E. Beierle ◽  
L. Chonsch ◽  
A. Scherer ◽  
...  

Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2980
Author(s):  
Tareq M. Osaili ◽  
Fayeza Hasan ◽  
Anas A. Al-Nabulsi ◽  
Dinesh Kumar Dhanasekaran ◽  
Reyad Shaker Obaid ◽  
...  

The use of essential oils (EOs) and/or vacuum packaging (VP) with meats could increase product shelf-life. However, no studies investigating the effect of EOs and VP on camel meat background microbiota have been conducted previously. The study aimed to analyze the antimicrobial effect of essential oils (EOs) carvacrol (CA), cinnamaldehyde (CI), and thymol (TH) at 1 or 2% plus vacuum packaging (VP) on the growth of spoilage-causing microorganisms in marinated camel meat chunks during storage at 4 and 10 °C. VP is an effective means to control spoilage in unmarinated camel meat (CM) and marinated camel meat (MCM) compared to aerobic packaging (AP). However, after EO addition to MCM, maximum decreases in spoilage-causing microorganisms were observed under AP on day 7. Increasing the temperature from 4 to 10 °C under AP increased the rate of spoilage-causing bacterial growth in CM and MCM; however, EOs were more effective at 10 °C. At 10 °C the maximum reductions in total mesophilic plate counts, yeast and molds, mesophilic lactic Acid bacteria, Enterobacteriaceae, and Pseudomonas spp. were 1.2, 1.4, 2.1, 3.1, and 4.8 log CFU/g, respectively. Incorporating EOs at 2% in MCM, held aerobically under temperature abuse conditions, delayed spoilage.


Revista Vitae ◽  
2016 ◽  
Vol 23 (1) ◽  
pp. 167-172
Author(s):  
América CHÁVEZ- MARTÍNEZ ◽  
◽  
Martha ESTRADA-GANDARILLA ◽  
Ana Luisa RENTERÍA MONTERRUBIO ◽  
Mario Alejandro GALLEGOS ACEVEDO ◽  
...  

2015 ◽  
Vol 36 (6) ◽  
pp. 3681
Author(s):  
Cleonice Mendes Pereira Sarmento ◽  
Eliane Colla ◽  
Cristiane Canan ◽  
Francieli Dalcanton ◽  
Gláucia Maria Falcão de Aragão

The uncontrolled growth of lactic acid bacteria (LAB) in meat and meat products leads to product spoilage, and thus shortens product shelf life. Although food additives are known to decrease LAB growth, this effect has not been analyzed in detail. Here, a detailed analysis was performed of the effects of sodium chloride, sodium polyphosphate, sodium lactate, sodium nitrite/nitrate, and garlic on the growth of the Lactobacillus plantarum in culture medium. The results were used to design and test experimental formulations of meat products. Initially, the effect of food additives on L. plantarum was evaluated using a Fractional Factorial Design (FFD), followed by a Central Composite Rotatable Design (CCRD). The Modified Gompertz Model was adjusted to the growth curves to determine the Kinetic parameters of bacterial growth (logarithmic increase in the population, specific growth rate, and lag phase extension). Higher sodium lactate and sodium chloride levels had a negative impact on L. plantarum growth parameters (p?0.05). Therefore, we designed experimental formulations of mortadella and smoked pork sausages containing 4% sodium lactate (w w-1) and 2.4-3.5% sodium chloride (w w-1), and determined LAB growth from samples of stored products produced according to these formulations, in order to determine product shelf life. There was an increased lag phase of LAB growth for most experimental formulations. Also, the experimental smoked pork sausages had a longer shelf life, which was increased by at least 22 days, suggesting that the proposed formulation, with higher than standard lactate concentration, increased the product’s shelf life.


Sign in / Sign up

Export Citation Format

Share Document