Sodium Lactate Addition on the Quality and Shelf Life of Refrigerated Sliced Poultry Sausage Packaged in Air or Nitrogen Atmosphere

2004 ◽  
Vol 67 (3) ◽  
pp. 601-606 ◽  
Author(s):  
RENATA CEGIELSKA-RADZIEJEWSKA ◽  
JAN PIKUL

The aim of this study was to determine the effect of sodium lactate addition on shelf-life extension of sliced poultry sausage packaged both in air and nitrogen atmospheres and stored in refrigerated conditions. Basic chemical composition, pH, and malonaldehyde content were assayed and color measurement using the reflection method was carried out. Microbiological examination consisted of determination of total number of aerobic psychrotrophic bacteria and number of lactic acid bacteria. Sensory evaluation of products was performed. Microbiological and sensory quality of sliced poultry meat sausage was dependent on the addition during production of sodium lactate and the composition of gases (air or nitrogen) used in packaging. Slices of poultry sausage with 1% as well as 2% of sodium lactate maintained their initial quality of evaluated sensory attributes longer, irrespective of the applied gases. Sodium lactate inhibited growth of aerobic psychrotrophic bacteria and lactic acid bacteria during refrigerated storage. Sodium lactate also inhibited the formation of malonaldehyde in sliced poultry sausage during refrigerated storage. The effectiveness of this process depended on the concentration of sodium lactate addition. It was concluded that 1% as well as 2% addition of sodium lactate could extend the shelf life of sliced poultry sausage packaged in air atmosphere and stored at 5 to 7°C by 3 or 4 times, respectively. Sliced poultry sausage treated with 2% sodium lactate packed in nitrogen had the longest (35-day) shelf life. This was a sevenfold increase in the shelf life of sliced poultry sausage compared with the control.

2018 ◽  
Vol 81 (12) ◽  
pp. 1982-1987 ◽  
Author(s):  
MARIA I. TSIRAKI ◽  
TAHRA EL-OBEID ◽  
HANY M. YEHIA ◽  
LAYAL KARAM ◽  
IOANNIS N. SAVVAIDIS

ABSTRACT The effects of vacuum packaging, chitosan (1.5%, w/v), and natamycin (10 mg/L, w/v) on phyllo pastry quality were studied by monitoring microbiological, chemical, and sensory changes. Five lots were prepared with or without vacuum packaging, chitosan, and natamycin: A, air packaged (control); V, vacuum packaged; VC, vacuum packaged with chitosan; VN, vacuum packaged with natamycin; and VCN, vacuum packaged with both chitosan and natamycin. Based on the sensory acceptability data, a shelf life of 6 (A), 12 (V), 14 (VN), 16 (VC), and 17 (VCN) days was obtained at 4°C. VCN treatment resulted in a shelf life extension of 11 days compared with the shelf life of the control. Microbiological data revealed that the combination of chitosan and natamycin resulted in significant reductions of microbial species (mesophilic total viable counts, yeasts and molds, psychrotrophic bacteria, lactic acid bacteria, Enterobacteriaceae, and enterococci) of 1 to 3 log CFU/g on the final day (day 18) of storage. Results suggest that the combination of chitosan and natamycin, which is an effective antifungal agent, can delay the spoilage of phyllo pastry while maintaining acceptable sensorial characteristics and the original freshness and appearance of the product.


2019 ◽  
Vol 20 (6) ◽  
pp. 489-496 ◽  
Author(s):  
Anna Chlebowska-Śmigiel ◽  
Katarzyna Kycia ◽  
Katarzyna Neffe-Skocińska ◽  
Marek Kieliszek ◽  
Małgorzata Gniewosz ◽  
...  

Background: Pullulan can partially or completely replace starch or fat, thanks to which it can be used for the production of dietetic food. It allows you to maintain the desired consistency, and increases the viscosity of the product. Objective: Therefore, an attempt was made to produce yogurts with pullulan addition and determine the effect of its presence on the number of LAB, pH change, titratable acidity, and sensory quality of yogurts during storage at 4°C for 28 days. Method: The effect of addition of 0; 1.0 and 2.0 % w/v pullulan as a yogurt ingredient on the changes in pH, acidity, LAB number, and sensory quality of yogurt during storage at 4°C for 28 days was examined. Results: Pullulan did not affect yogurt pH, but the addition of 2.0 % w/v pullulan increased the acidity of yogurt as compared to that of the control yogurt. A statistically significantly higher total number of Lactobacillus, by approximately 1 logarithmic cycle, was found in yogurts with pullulan than in the control yogurt on the 28th day of storage. The yogurt with 1.0% w/v pullulan addition showed better sensory characteristics than that with 2.0% pullulan w/v addition. Conclusion: The conducted research proved that the presence of pullulan in the culture medium stimulates the growth of selected lactic acid bacteria and influences their fermentation capacity. The use of 1.0 % w/v pullulan during the production of yogurts allowed to obtain a sensorically acceptable product, it had a protective effect on the number of lactic acid bacteria during 28 days of refrigerated storage of yogurt.


1970 ◽  
Vol 16 (5) ◽  
pp. 287-297 ◽  
Author(s):  
A. G. Kempton ◽  
S. R. Bobier

The shelf life of vacuum-packed luncheon meats during refrigerated storage was not related to "total" counts since the only organisms that multiplied in this environment were lactic acid bacteria, which formed only a small proportion of the initial population.Bacterial growth curves obtained from several Canadian products were remarkably similar, but the spoilage patterns differed. For example, wiener spoilage was a function of bacterial growth while bologna spoiled from the accumulation of bacterial end products. After 15 weeks at 5 °C, the meats contained 0.6 to 0.8% lactic acid and the pH of comminuted meats dropped below 5.0. Cooked ham contained much less carbohydrate than comminuted meats, and the pH remained above 6.0. Under these conditions, ham is susceptible to putrefaction although this was not observed during this study.It was found that cooking can eliminate all lactic acid bacteria present in the raw meats but the products become recontaminated during slicing and packaging. The cleaning and sanitizing procedure used by the Company that cooperated in this study was efficient, but it was recommended that the packaging room be cleaned more often, and that a selective medium for lactic acid bacteria be used in sanitation surveys.


Author(s):  
Xianqin Yang ◽  
Hui Wang ◽  
Scott Hrycauk ◽  
Mark D. Klassen

We investigated the impact of peroxyacetic acid (PAA; 200 ppm) spray on the microbiota and shelf life of commercial vacuum packed beef stored at chiller temperatures. Ribeye cuts (n=147) were collected from a local beef plant on the day of production for two consecutive days, with one set collected at the start of work with the PAA spray nozzles turned off (control) and during the routine production with the PAA spray nozzles turned on (PAA) on each day. Packs were stored at 4, 2 and -1°C for up to 34, 104 and 180 days, and sampled at appropriate intervals for sensory assessment, microbial enumeration and microbial profiling by 16S rRNA gene amplicon analysis. Treatment with PAA did not affect the initial meat pH, the initial numbers of total aerobes, lactic acid bacteria or Enterobacteriaceae (p>0.05) before storage; however, it delayed the onset of spoilage by 7, 21 and 54 days at 4, 2 and -1°C, respectively. Square root models of the variation of growth rate with temperature indicated lactic acid bacteria grew faster and Enterobacteriaceae grew slower on PAA treated than not treated meat. Negative associations between pH and deterioration of meat during storage were observed for PAA treated meat. During storage, the microbiota were primarily dominated by Carnobacterium and Lactobacillus/Lactococcus on control meat, but by Leuconostoc on PAA treated meat. Serratia, Yersinia and Clostridium were identified by LEfSe analysis as biomarkers for control meat, the latter of which was found in high abundance in samples that had the highest spoilage scores. IMPORTANCE The findings of this study show that PAA solutions applied at low concentrations under commercial settings positively modulated the meat microbiota. It did not have bactericidal effects for beef subprimals with very low microbial load. However, it differentially impacted the members of the microbiota, which resulted in delayed onset of spoilage of vacuum packed beef subprimal stored at all three temperatures (4, 2 and -1°C). This differential impact could be through one or a combination of the following factors: favoring the growth of lactic acid bacteria which may in turn exert a competitive exclusion that might be due to production of antimicrobial compounds such as organic acids and bacteriocins; exerting synergistic antimicrobial effects with low temperatures against members of Enterobacteriaceae; direct or indirect inhibitory effects against members of clostridia. These findings not only advance our understanding of the microbial ecology of vacuum packed meat stored at chiller temperatures, but also suggest bacteriostatic concentrations of antimicrobial interventions can be explored for shelf life extension.


2017 ◽  
Vol 56 (3) ◽  
pp. 197
Author(s):  
S. B. KARAGEORGIS (Σ.Β. ΚΑΡΑΓΕΩΡΓΗΣ) ◽  
D. K. PAPAGEORGIOU (Δ.Κ. ΠΑΠΑΓΕΩΡΓΙΟΥ) ◽  
A. I. MANTIS (Α.Ι. ΜΑΝΤΗΣ) ◽  
S. A. GEORGAKIS (Σ.Α ΓΕΩΡΓΑΚΗΣ)

The use of mesophilic lactic acid bacteria (LAB) in the manufacture of Feta cheese was studied. Five selected mesophilic strains, confirmed as Lactobacillus plantarum (2 strains), Lb. paracasei subsp. paracasein Lb. brevis and Lactococcus lactis subsp. lactis, isolated from ripened Feta and Teleme cheeses, were used in 7 different combinations, alone or in combination with Lb. delbrueckii subsp. bulgaricus and Streptococcus thermophilus (the control combination) for the manufacture of Feta cheese. Each combination of strains was used to prepare four different batches of Feta cheese, keeping all the other production parameters according to the traditional technology. The cheese batches were analyzed for bacteriological, chemical and sensory characteristics. The results showed that the populations of lactobacilli and lactococci increased from the beginning of the cheese manufacture reaching a population of more than 7.0 log10cfu/g. This level was maintained during the whole ripening period (60 days) and during the subsequent 60-day storage period. Only in batches prepared with the control combination F8 {Str. thermophilus I Lb. delbrueckii subsp. bulgaricus), did the population of LAB decline to 6.0 log10cfu/g at the end of the ripening period. Also, except for the yeast population which increased, in all other bacterial groups tested (coliforms, staphylococci, total contaminating bacteria, psychrotrophic bacteria, proteolytic and lipolytic bacteria) populations gradually decreased during the ripening period. Results of the chemical analysis showed a sharp increase in acidity (the cheese pH dropped to ca. 4.5 within 3-4 d) and, whereas the values of other chemical indices (moisture content, fat content and NaCl) were stabilized between the 15* and 30* day of ripening, proteolysis (nitrogen soluble in 12% TCA) and lipolysis (ADV) progressed throughout ripening. The assessment of the overall acceptance by the sensory panel was between "very good" and "excellent" for all cheeses. This suggests that the selected mesophilic starter cultures can be used alone or in combination with the traditional culture {Lb.delbrueckii subsp. bulgaricus I Str. thermophilus) in the production of Feta cheese, as the results of this work indicate that the wild (autochthonous) strains of Lb. plantarum and Lc. lactis subsp. Lactis are well adapted to the environmental conditions that prevail in Feta cheese. Batches prepared using these mesophilic starters received the highest score in the assessment of organoleptic quality of Feta cheese. Very good results were also obtained using the combination of the mesophilic starters Lb. brevis and Lc. lactis subsp. lactis or Lb. paracasei subsp. paracasei and Lc. lactis subsp. lactis alone or in combination with Lb. delbrueckii subsp. bulgaricus and Str. thermophilus.


2009 ◽  
Vol 72 (2) ◽  
pp. 365-374 ◽  
Author(s):  
S. MATAMOROS ◽  
F. LEROI ◽  
M. CARDINAL ◽  
F. GIGOUT ◽  
F. KASBI CHADLI ◽  
...  

Previously isolated lactic acid bacteria (LAB) from seafood products have been investigated for their capacity to increase the sensory shelf life of vacuum-packaged shrimp and cold-smoked salmon and to inhibit the growth of three pathogenic bacteria. Two different manufactured batches of cooked, peeled, and vacuum-packaged shrimp were inoculated with seven LAB strains separately at an initial level of 5 log CFU g−1, and the spoilage was estimated by sensory analysis after 7 and 28 days of storage at 8°C. Two Leuconostoc gelidum strains greatly extended the shelf life of both batches, two Lactococcus piscium strains had a moderate effect, two bacteria were spoilers (Lactobacillus fuchuensis and Carnobacterium alterfunditum), and the last one (another Leuconostoc gelidum strain) showed highly variable results depending on the batch considered. The four strains showing the best results (two Leuconostoc gelidum and two Lactococcus piscium strains) were selected for the same experiment in cold-smoked salmon. In this product, Lactococcus piscium strains showed better inhibiting capacities, improving the sensory quality significantly at 14 and 28 days of storage. Finally, the inhibiting capacities of two strains (one Leuconostoc gelidum strain and one Lactococcus piscium strain) were tested against three pathogenic bacteria (Vibrio cholerae, Listeria monocytogenes, and Staphylococcus aureus) by challenge tests in shrimp. LAB and pathogenic bacteria were coinoculated in vacuum-packaged shrimp and enumerated during 5 weeks. Lactococcus piscium strain EU2241 was able to reduce significantly the number of Listeria monocytogenes and S. aureus organisms in the product by 2 log throughout the study for Listeria monocytogenes and up to 4 weeks for S. aureus.


1999 ◽  
Vol 62 (5) ◽  
pp. 499-508 ◽  
Author(s):  
Y.-Y. HAO ◽  
R. E. BRACKETT ◽  
L. R. BEUCHAT ◽  
M. P. DOYLE

The production of toxin by a 10-strain mixture of proteolytic Clostridium botulinum in fresh produce packaged in polyethylene films with different oxygen permeability was determined. Broccoli florets, shredded carrots, and green beans inoculated with approximately 102 C. botulinum spores per g were placed in bags (1.4 kg per bag) composed of four films with different oxygen transmission rates (OTRs). Broccoli was packaged in bags with OTRs of 3 (7,000 cm3/m2/24 h) and 4 (16,000 cm3/m2/24 h), and green beans were packaged in bags with OTRs of 2 (6,000 cm3/m2/24 h) and 4. Broccoli and green beans in bags were compressed and heat-sealed. Shredded carrots were packaged in bags with OTRs of 1 (3,000 cm3/m2/24 h) and 3 and vacuum-sealed. Produce was stored at 4, 13, and 21°C for up to 27 (broccoli) or 28 (carrots and green bean) days and analyzed periodically. At each sampling time, gas composition within the bags, pH of the produce, microbial populations (total aerobic and anaerobic microorganisms, lactic acid bacteria, psychrotrophic bacteria, yeasts, and molds), and the presence or absence of botulinal toxin were determined. Packaging material affected the quality of vegetables, especially broccoli stored at 4 and 13°C. For example, broccoli was scored as “good” after 22 days at 4°C when it was packaged in film with higher gas permeability (OTR of 4), whereas broccoli appeared to be in “poor” condition when packaged in film with lower gas permeability (OTR of 3). With the exception of lactic acid bacteria, packaging material did not noticeably influence the growth of microorganisms. Lactic acid bacteria grew better in broccoli packaged in bags with an OTR of 3 than in those with an OTR of 4 at all temperatures. Botulinal toxin was detected in broccoli packaged in bags with an OTR of 3 and stored at 13°C for 21 days and in those with an OTR of 4 and 3 and stored at 21°C for 10 days. All toxic samples were visibly spoiled. Toxin was not detected in produce packaged under any other test conditions.


2016 ◽  
Vol 39 (1) ◽  
pp. 59-64 ◽  
Author(s):  
Josip Vrdoljak ◽  
Vesna Dobranić ◽  
Ivana Filipović ◽  
Nevijo Zdolec

AbstractCheeses as ready-to-eat food should be considered as a potential source of foodborne pathogens, primarily Listeria monocytogenes. The aim of present study was to determine the microbiological quality of soft, semi-hard and hard cheeses during the shelf-life, with particular reference to L. monocytogenes. Five types of cheeses were sampled at different time-points during the cold storage and analyzed for presence of Salmonella and L. monocytogenes, as well as lactic acid bacteria, Escherichia coli, coagulase-positive staphylococci, yeasts, molds, sulfite-reducing clostridia and L. monocytogenes counts. Water activity, pH and NaCl content were monitored in order to evaluate the possibility of L. monocytogenes growth. Challenge test for L. monocytogenes was performed in soft whey cheese, to determine the growth potential of pathogen during the shelf-life of product. All analyzed cheeses were compliant with microbiological criteria during the shelf-life. In soft cheeses, lactic acid bacteria increased in the course of the shelf-life period (1.2-2.6 log increase), while in semi-hard and hard cheeses it decreased (1.6 and 5.2 log decrease, respectively). Soft cheeses support the growth of L. monocytogenes according to determined pH values (5.8-6.5), water activity (0.99-0.94), and NaCl content (0.3-1.2%). Challenge test showed that L. monocytogenes growth potential in selected soft cheese was 0.43 log10 cfu/g during 8 days at 4°C. Water activity in semi-hard and hard cheeses was a limiting factor for Listeria growth during the shelf-life. Soft, semi-hard and hard cheeses were microbiologically stable during their defined shelf-life. Good manufacturing and hygienic practices must be strictly followed in the production of soft cheeses as Listeria-supporting food and be focused on preventing (re)contamination.


Sign in / Sign up

Export Citation Format

Share Document