The microbial degradation of cyclohexanecarboxylic acid: a pathway involving aromatization to form p-hydroxybenzoic acid

1974 ◽  
Vol 20 (10) ◽  
pp. 1297-1306 ◽  
Author(s):  
E. R. Blakley

A strain of Arthrobacter catabolizes cyclohexanecarboxylic acid by a pathway involving aromatization of the ring before its cleavage. The pathway includes the following intermediates: trans-4-hydroxycyclohexanecarboxylic acid, 4-ketocyclohexanecarboxylic acid, p-hydroxybenzoic acid, protocatechuic acid, and β-ketoadipic acid. The oxidation of 4-hydroxycyclohexanecarboxylic acid by cell extracts specifically requires NAD+ and results in the production of 4-ketocyclohexanecarboxylic acid. The latter compound is oxidized in the presence of a suitable electron acceptor, such as oxygen, methylene blue, or 2,6-dichlorophenolindophenol, to p-hydroxybenzoic acid.


1992 ◽  
Vol 25 (11) ◽  
pp. 411-418 ◽  
Author(s):  
S. Tobita ◽  
S. Iyobe

An organism isolated from a soil sample with 4-chlorobenzoic acid (4-CBA) as the sole carbon and energy source was tentatively identified as an Acinetobacter sp. This organism, strain ST-1, could completely mineralize 4-CBA in pure culture. The strain hydrolytically dehalogenated 4-CBA as the first step in the degradation pathway. The product, 4-hydroxybenzoic acid, was further metabolized via protocatechuic acid (PCA) under aerobic conditions. The conversion of 4-CBA into 4-hydroxybenzoic acid occurred with a yield greater than 80% under anaerobic conditions with continuous passage of nitrogen into the culture, so molecular oxygen was not essential for dehalogenation. Spectrophotometrical studies showed that the strain oxidized PCA to form β-carboxy-cis, cis-muconic acid as the ortho-ring fission product. Cell extracts converted PCA to β-ketoadipic acid, which was evidence that PCA was cleaved by ortho fission and further degraded in the β-ketoadipate pathway.



1968 ◽  
Vol 110 (3) ◽  
pp. 491-498 ◽  
Author(s):  
P J Chapman ◽  
D J Hopper

1. Measurements of the rates of oxidation of various compounds by a fluorescent Pseudomonas indicated that metabolism of 2,4-xylenol was initiated by oxidation of the methyl group para to the hydroxyl group. 2. 4-Hydroxy-3-methylbenzoic acid was isolated as the product of oxidation of 2,4-xylenol by cells inhibited with αα′-bipyridyl. 3. 4-Hydroxyisophthalic acid accumulated at low oxygen concentrations when either 2,4-xylenol or 4-hydroxy-3-methylbenzoic acid was oxidized by cells grown with 2,4-xylenol. 4. When supplemented with NADH, but not with NADPH, cell extracts oxidized 4-hydroxy-3-methylbenzoic acid readily. 2-Hydroxy-5-methylbenzoic acid was not oxidized. 5. Both 4-hydroxyisophthalic acid and p-hydroxybenzoic acid were oxidized to β-oxoadipic acid by cell extracts supplemented with either NADH or NADPH. 4,5-Dihydroxyisophthalic acid was not oxidized. 6. From measurements of oxygen consumed and carbon dioxide evolved it was concluded that protocatechuic acid is an intermediate in the conversion of 4-hydroxyisophthalic acid into β-oxoadipic acid.



1978 ◽  
Vol 24 (7) ◽  
pp. 847-855 ◽  
Author(s):  
E. R. Blakley

The metabolism of cyclohexanecarboxylic acid by a bacterium, designated PRL W19, follows a pathway involving β-oxidation of coenzyme A intermediates analogous to the classical oxidation of fatty acids. The organism appears to have the property for the constitutive metabolism of caproic acid, and cell extracts contain high levels of the enzymes required for the functioning of the fatty acid cycle. However, the metabolism of cyclohexanecarboxylic acid requires induction by growth or incubation with an appropriate substrate. Extracts of induced cells contain several enzyme activities which are synthesized in response to the induction process. These enzymes include cyclohexanecarboxyl-CoA synthetase, cyclohexanecarboxyl-CoA dehydrogenase, 1-cyclohexenecarboxyl-CoA hydratase, and trans-2-hydroxycyclohexanecarboxyl-CoA dehydrogenase. A characteristic feature of this organism is that it becomes induced for the metabolism of benzoate and catechol during growth on cyclohexanecarboxylic acid, but benzoate does not appear to be an obligatory intermediate in the metabolism of cyclohexanecarboxylic acid.



2021 ◽  
Author(s):  
Junhui Li ◽  
Paul Dijkstra ◽  
Qihong Lu ◽  
Shanquan Wang ◽  
Shaohua Chen ◽  
...  

AbstractEffective degradation of N,N-Dimethylformamide (DMF), an important industrial waste product, is challenging as only few bacterial isolates are known to be capable of degrading DMF. Aerobic remediation of DMF has typically been used, whereas anoxic remediation attempts are recently made, using nitrate as one electron acceptor, and ideally include methane as a byproduct. Here, we analyzed 20,762 complete genomes and 28 constructed draft genomes for the genes associated with DMF degradation. We identified 952 genomes that harbor genes involved in DMF degradation, expanding the known diversity of prokaryotes with these metabolic capabilities. Our findings suggest acquisition of DMF-degrading gene via plasmids are important in the order Rhizobiales and genus Paracoccus, but not in most other lineages. Degradation pathway analysis reveals that most putative DMF degraders using aerobic Pathway I will accumulate methylamine intermediate, while members of Paracoccus, Rhodococcus, Achromobacter, and Pseudomonas could potentially mineralize DMF completely under aerobic conditions. The aerobic DMF degradation via Pathway II is more common than thought and is primarily present in α-and β-Proteobacteria and Actinobacteria. Most putative DMF degraders could grow with nitrate anaerobically (Pathway III), however, genes for the use of methyl-CoM to produce methane were not found. These analyses suggest that microbial consortia could be more advantageous in DMF degradation than pure culture, particularly for methane production under the anaerobic condition. The identified genomes and plasmids form an important foundation for optimizing bioremediation of DMF-containing wastewaters.ImportanceDMF is extensively used as a solvent in industries, and is classified as a probable carcinogen. DMF is a refractory compound resistant to degradation, and until now, only few bacterial isolates have been reported to degrade DMF. To achieve effective microbial degradation of DMF from wastewater, it is necessary to identify genomic diversity with the potential to degrade DMF and characterize the genes involved in two aerobic degradation pathways and potential anaerobic degradation for methane production. A wide diversity of organisms has the potential to degrade DMF. Plasmid-mediated degradation of DMF is important for Rhizobiales and Paracoccus. Most DMF degraders could grow anaerobically with nitrate as electron acceptor, while co-cultures are required to complete intermediate methanogenesis for methane production. This is the first genomics-based global investigation into DMF degradation pathways. The genomic database generated by this study provides an important foundation for the bioremediation of DMF in industrial waste waters.Abstract Figure





1964 ◽  
Vol 19 (9) ◽  
pp. 781-783 ◽  
Author(s):  
Hans Grisebach ◽  
Karl-Otto Vollmer

Further investigations on the biosynthesis of benzoic acids in Gaultheria procumbens L. have shown that besides salicylic acid all the other benzoic acids (gentisinic acid, p-hydroxybenzoic acid, protocatechuic acid, o-pyrocatechuic acid(?), syringic acid and vanillinic acid) can be formed from cinnamic acid. In the case of vanillinic acid it was proved that the total activity is located in the carboxyl group when cinnamic acid-[3-14C] is the precursor.Formiat-14C is incorporated into the methylester group of methylsalicylate.



2018 ◽  
Vol 13 (12) ◽  
pp. 1934578X1801301 ◽  
Author(s):  
Nguyen Quang Hung ◽  
Nguyen Thi Luyen ◽  
Nguyen The Cuong ◽  
Tran Huy Thai ◽  
Nguyen Thanh Tung ◽  
...  

A rare noriridoid and six known phenolic compounds were isolated from the parasite plant Rhopalocnemis phalloides. Using spectroscopic methods, these compounds were identified as 10-acetoxy- cis-2-oxabicyclo[4.3.0]nonan-7-en-3-one (1), p-hydroxybenzoic acid (2), protocatechuic acid (3), gallic acid (4), coniferyl aldehyde (5), l- O-trans-cinnamoyl-β-D-glucoside (6), and coniferin (7). The noriridoid compound is the first reported from the family Balanophoraceae. Of the isolated compounds, coniferyl aldehyde had the strongest inhibitory effect on nitric oxide production (IC50 = 8.24 μM).



1964 ◽  
Vol 19 (5) ◽  
pp. 398-405 ◽  
Author(s):  
M. H. Zenk ◽  
G. Müller

Feeding experiments with glucose- (2-14C), phenylalanine- (3-14C), tyrosine- (3-14C) and p-coumaric acid- (3-14C) showed that the latter three substances are incorporated in good yields into p-hydroxybenzoic acid in leaves of Catalpa ovata. Kinetic experiments showed that p-hydroxybenzoic acid is formed from phenylalanine via p-coumaric acid and the subsequent β-oxidation of the side chain. p-Hydroxybenzoic acid can also be synthetised by hydroxylation of benzoic acid, but this does not seem to be the biosynthetic route in Catalpa.Phenylalanine- (3-14C) is also incorporated into benzoic acid, protocatechuic acid, and vanillic acid by different plants; the radioactivity of the β-C atom of the amino acid was found in each case to be located in the carboxyl group of the C6 — C1 acid. This suggests that in higher plants the benzoic acids are formed from the corresponding cinnamic acids via β-oxidation.



1969 ◽  
Vol 47 (8) ◽  
pp. 825-827 ◽  
Author(s):  
R. Premkumar ◽  
P. V. Subba Rao ◽  
N. S. Sreeleela ◽  
C. S. Vaidyanathan

m-Hydroxybenzoic acid 4-hydroxylase was isolated and partially purified from Aspergillus niger grown in presence of m-hydroxybenzoic acid. The enzyme catalyzed the stoichiometric formation of protocatechuic acid (3,4-dihydroxybenzoic acid) from m-hydroxybenzoic acid with the consumption of NADPH and molecular oxygen. The reaction proceeded best at pH 7.2 and showed a requirement for FAD.





Sign in / Sign up

Export Citation Format

Share Document