scholarly journals Genomics-informed insights into microbial degradation of N,N-dimethylformamide

2021 ◽  
Author(s):  
Junhui Li ◽  
Paul Dijkstra ◽  
Qihong Lu ◽  
Shanquan Wang ◽  
Shaohua Chen ◽  
...  

AbstractEffective degradation of N,N-Dimethylformamide (DMF), an important industrial waste product, is challenging as only few bacterial isolates are known to be capable of degrading DMF. Aerobic remediation of DMF has typically been used, whereas anoxic remediation attempts are recently made, using nitrate as one electron acceptor, and ideally include methane as a byproduct. Here, we analyzed 20,762 complete genomes and 28 constructed draft genomes for the genes associated with DMF degradation. We identified 952 genomes that harbor genes involved in DMF degradation, expanding the known diversity of prokaryotes with these metabolic capabilities. Our findings suggest acquisition of DMF-degrading gene via plasmids are important in the order Rhizobiales and genus Paracoccus, but not in most other lineages. Degradation pathway analysis reveals that most putative DMF degraders using aerobic Pathway I will accumulate methylamine intermediate, while members of Paracoccus, Rhodococcus, Achromobacter, and Pseudomonas could potentially mineralize DMF completely under aerobic conditions. The aerobic DMF degradation via Pathway II is more common than thought and is primarily present in α-and β-Proteobacteria and Actinobacteria. Most putative DMF degraders could grow with nitrate anaerobically (Pathway III), however, genes for the use of methyl-CoM to produce methane were not found. These analyses suggest that microbial consortia could be more advantageous in DMF degradation than pure culture, particularly for methane production under the anaerobic condition. The identified genomes and plasmids form an important foundation for optimizing bioremediation of DMF-containing wastewaters.ImportanceDMF is extensively used as a solvent in industries, and is classified as a probable carcinogen. DMF is a refractory compound resistant to degradation, and until now, only few bacterial isolates have been reported to degrade DMF. To achieve effective microbial degradation of DMF from wastewater, it is necessary to identify genomic diversity with the potential to degrade DMF and characterize the genes involved in two aerobic degradation pathways and potential anaerobic degradation for methane production. A wide diversity of organisms has the potential to degrade DMF. Plasmid-mediated degradation of DMF is important for Rhizobiales and Paracoccus. Most DMF degraders could grow anaerobically with nitrate as electron acceptor, while co-cultures are required to complete intermediate methanogenesis for methane production. This is the first genomics-based global investigation into DMF degradation pathways. The genomic database generated by this study provides an important foundation for the bioremediation of DMF in industrial waste waters.Abstract Figure

2011 ◽  
Vol 367 ◽  
pp. 63-71 ◽  
Author(s):  
Adrian O. Eberemu ◽  
Agapitus A. Amadi ◽  
Joseph E. Edeh

Laboratory study on compacted tropical clay treated with up to 16% rice husk ash (RHA), an agro-industrial waste; to evaluate its hydraulic properties and hence its suitability in waste containment systems was carried out. Soil-RHA mixtures were compacted using standard Proctor, West African Standard and modified Proctor efforts at-2, 0, 2 and 4% of optimum moisture content (OMC). Compacted samples were permeated and the hydraulic behaviour of the material was examined considering the effects of moulding water content, water content relative to optimum, dry density and RHA contents. Results showed decreasing hydraulic conductivity with increasing moulding water content and compactive efforts; it also varied greatly between the dry and wet side of optimum decreasing towards the wet side. Hydraulic conductivity generally decreased with increased dry density for all effort. Hydraulic conductivity increased with rice husk ash treatment at the OMC; but were within recommended values of 1 x 10-7 cm/s for up to 8% rice husk ash treatment irrespective of the compactive effort used. This shows the suitability of the material as a hydraulic barrier in waste containment systems for up to 8% rice husk ash treatment and beneficial reuse of this agro-industrial waste product.


1994 ◽  
Vol 30 (8) ◽  
pp. 45-54 ◽  
Author(s):  
O. Mizuno ◽  
Y. Y. Li ◽  
T. Noike

The effects of sulfate concentration and COD/S ratio on the anaerobic degradation of butyrate were investigated by using 2.0 L anaerobic chemostat-type reactor at 35°C. The study was conducted over a wide range of the COD/S ratio (1.5 to 148) by varying COD concentrations (2500–10000 mg/L) and sulfate concentrations (68–1667 mg-S/L) in the substrate. The sludge retention time at each COD/S ratio was changed from 5 to 20 days. The interaction between methane producing bacteria (MPB) and sulfate-reducing bacteria (SRB) was evidently influenced by COD/S ratio in the substrate. When COD/S ratio was 6.0 or more, methane production was the predominate reaction and over 80% of the total electron flow was used by MPB. At the COD/S ratio of 1.5, SRB utilzed over 50% of the total electron flow. A large amount of sulfate reduction resulted in not only the decrease of methane production, but also the rapid increase of the bacterial growth. The degradation pathway of butyrate and the composition of bacterial populations in the reactor were also dominated by COD/S ratio. In sulfate depleted condition, butyrate was degraded to methane via acetate and hydrogen by MPB. On the other hand, butyrate was firstly degraded into sulfide and acetate in sulfate rich conditions by SRB, and the produced acetate was then degraded by acetate consuming MPB and SRB. The methanogenesis from acetate was inhibited by the high concentration of sulfide.


2018 ◽  
Vol 13 ◽  
pp. 258-264 ◽  
Author(s):  
Karina O. Oliveira ◽  
Amanda R.M. Silva ◽  
Bianca F. da Silva ◽  
Humberto M.S. Milagre ◽  
Cintia D.F. Milagre

2011 ◽  
Vol 6 (1) ◽  
Author(s):  
S. Soda ◽  
K. Wada ◽  
M. Okuda ◽  
M. Ike

The modified ADM1 including lactate and ethanol was verified using experimental data for methane/hydrogen production processes from model organic waste. Monosaccharides were presumably degraded into acetate, lactate, butyrate, and ethanol; lactate is further degraded into propionate and acetate; ethanol is degraded into acetate. The methane production experiment was carried out using an 8-L reactor operated at 55°C, pH 6.8, and sludge retention time (SRT) of 7–20 days for 370 days. Concentrations of carbohydrates, monosaccharides, butyrate, propionate, valerate, acetate, and the methane production rate were simulated well by the modified ADM1. The ratio of degradation pathways from monosaccharides to acetate, lactate, butyrate, and ethanol were inferred, respectively, to be 0.4, 0.6, 0.0, and 0.0. The hydrogen production experiment was carried out using a 2-L (1.5L) reactor operated at 35°C, pH 6.0-6.5, and SRT of 0.5–2.0 days for 370 days. The simulation results suggested that all bacterial populations except the sugar-degrading bacteria were washed out from the reactor because of the short SRT. The respective ratios of degradation pathways from monosaccharides to acetate, lactate, propionate, and ethanol were inferred to be 0.55, 0.0, 0.4, and 0.05 at pH 6.5 and 0.7, 0.2, 0.05 and 0.05 at pH 6.0.


1993 ◽  
Vol 333 ◽  
Author(s):  
L. H. Brush ◽  
J. W. Garner ◽  
L. J. Storz

ABSTRACTDesign-basis transuranic (TRU) waste to be emplaced in the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico may generate significant quantities of gas, which may affect the performance of the WIPP with respect to regulations for radioactive and/or chemically hazardous waste constituents. We are developing a model to predict gas generation in WIPP disposal rooms during and after filling and sealing. Currently, the model includes: (1) oxic and anoxic corrosion of steels and other Fe-base alloys, including passivation and depassivation; (2) microbial degradation of cellulosics with O2, NO3-, FeO(OH) , SO42-, or CO2as the electron acceptor; (3) α radiolysis of brine; (4) consumption of CO2and, perhaps, H2S by Ca(OH)2(in cementitious materials) and CaO (a potential backfill additive). The code simulates these processes and interactions among them by converting reactants (steels, cellulosics, etc.) to gases and other products at experimentally observed or estimated rates and plotting temporal reaction paths in three-dimensional phase diagrams for solids in the Fe-H2O-CO2-H2-H2S system.


2017 ◽  
Vol 165 ◽  
pp. 621-629 ◽  
Author(s):  
Nurul Asyifah Mustapha ◽  
Siti Suhailah Sharuddin ◽  
Mohd Huzairi Mohd Zainudin ◽  
Norhayati Ramli ◽  
Yoshihito Shirai ◽  
...  

2007 ◽  
Vol 148 (1) ◽  
pp. 343-351 ◽  
Author(s):  
Maria S. Holtze ◽  
Hans Christian B. Hansen ◽  
René K. Juhler ◽  
Jan Sørensen ◽  
Jens Aamand

2021 ◽  
Vol 12 ◽  
Author(s):  
Jiayi Li ◽  
Wenping Zhang ◽  
Ziqiu Lin ◽  
Yaohua Huang ◽  
Pankaj Bhatt ◽  
...  

Diuron (DUR) is a phenylurea herbicide widely used for the effective control of most annual and perennial weeds in farming areas. The extensive use of DUR has led to its widespread presence in soil, sediment, and aquatic environments, which poses a threat to non-target crops, animals, humans, and ecosystems. Therefore, the removal of DUR from contaminated environments has been a hot topic for researchers in recent decades. Bioremediation seldom leaves harmful intermediate metabolites and is emerging as the most effective and eco-friendly strategy for removing DUR from the environment. Microorganisms, such as bacteria, fungi, and actinomycetes, can use DUR as their sole source of carbon. Some of them have been isolated, including organisms from the bacterial genera Arthrobacter, Bacillus, Vagococcus, Burkholderia, Micrococcus, Stenotrophomonas, and Pseudomonas and fungal genera Aspergillus, Pycnoporus, Pluteus, Trametes, Neurospora, Cunninghamella, and Mortierella. A number of studies have investigated the toxicity and fate of DUR, its degradation pathways and metabolites, and DUR-degrading hydrolases and related genes. However, few reviews have focused on the microbial degradation and biochemical mechanisms of DUR. The common microbial degradation pathway for DUR is via transformation to 3,4-dichloroaniline, which is then metabolized through two different metabolic pathways: dehalogenation and hydroxylation, the products of which are further degraded via cooperative metabolism. Microbial degradation hydrolases, including PuhA, PuhB, LibA, HylA, Phh, Mhh, and LahB, provide new knowledge about the underlying pathways governing DUR metabolism. The present review summarizes the state-of-the-art knowledge regarding (1) the environmental occurrence and toxicity of DUR, (2) newly isolated and identified DUR-degrading microbes and their enzymes/genes, and (3) the bioremediation of DUR in soil and water environments. This review further updates the recent knowledge on bioremediation strategies with a focus on the metabolic pathways and molecular mechanisms involved in the bioremediation of DUR.


Sign in / Sign up

Export Citation Format

Share Document