Structure and composition of the cell wall of Choanephora cucurbitarum

1976 ◽  
Vol 22 (4) ◽  
pp. 486-494 ◽  
Author(s):  
D. R. Letourneau ◽  
J. M. Deven ◽  
M. S. Manocha

Mechanically isolated, cytoplasm-free cell walls of Choanephora cucurbitarum were analyzed qualitatively and quantitatively by use of microchemical methods, infrared spectrophotometry, and X-ray diffraction. Chemical analysis of cell wall revealed the presence of chitin (17%), chitosan (28.4%), neutral sugars (7.2%), uronic acid (2.4%), proteins (8.2%), and lipids (13.8%). The structure of hyphal wall, investigated by electron microscopy of shadowed replicas before and after alkali-acid hydrolysis, showed two distinct regions: microfibrillar and amorphous. The microfibrils, which were composed of mainly chitin, were organized into two distinct layers; an outer, thicker layer of randomly oriented microfibrils, and an inner, thin layer of parallel microfibrils. In its structure and chemical composition the cell wall of C. cucurbitarum resembles those of other zygomycetous fungi.

Holzforschung ◽  
2017 ◽  
Vol 71 (2) ◽  
pp. 129-135 ◽  
Author(s):  
Yanjun Li ◽  
Chengjian Huang ◽  
Li Wang ◽  
Siqun Wang ◽  
Xinzhou Wang

Abstract The effects of thermal treatment of bamboo at 130, 150, 170, and 190°C for 2, 4, and 6 h were investigated in terms of changes in chemical composition, cellulose crystallinity, and mechanical behavior of the cell-wall level by means of wet chemical analysis, X-ray diffraction (XRD), and nanoindentation (NI). Particularly, the reduced elastic modulus (Er), hardness (H), and creep behavior were in focus. Both the temperature and treatment time showed significant effects. Expectedly, the hemicelluloses were degraded and the relative lignin content was elevated, while the crystallinity of the cellulose moiety was increased upon thermal treatment. The Er and H data of the cell wall were increased after 6 h treatment at 190°C, from 18.4 to 22.0 GPa and from 0.45 to 0.65 GPa, respectively. The thermal treatment led to a decrease of the creep ratio (CIT) under the same conditions by ca. 28%. The indentation strain state (εi) also decreased significantly after thermal treatment during the load-holding stage.


1992 ◽  
Vol 70 (5) ◽  
pp. 933-941 ◽  
Author(s):  
E. Garnier-Sillam ◽  
I. Grech ◽  
Y. Czaninski ◽  
M.-T. Tollier ◽  
B. Monties

Free cell-wall residues were prepared by extracting wood samples of spruce (Populus euramericana cv. Fidzi Pauley) and poplar (Picea sitchensis). These species were chosen for their lignin types: guaiacyl in spruce and guaiacyl–syringyl in poplar. The parietal residues obtained were used as the sole food for the xylophagous termite Reticulitermes lucifugus var. santonensis and were compared before and after ingestion and transit in the digestive tracts. Differences due to the mechanical action of the gizzard were found in association with chemical changes. Polysaccharides were unmasked after digestion and could clearly be observed after reaction with periodic acid – thiocarbohydrazide – silver proteinate. A fibrillary meshwork was also observed inside the lignified cell walls. Biodegradation of cell wall material was particularly clear in poplar where granules formed an electron-dense plasma when uranyl acetate – lead citrate or periodic acid – thiocarbohydrazide – silver proteinate was used as a contrast medium. A selective biodegradation of syringyl monomers in poplar parietal residues was indicated by thioacidolysis but requires confirmation. Breakdown of lignified cell walls begins with a biodegradation of the lignin network associated with or followed by the digestion of polysaccharides. Syringyl-rich lignin fractions seemed to break down faster. Whether the enzymic pathway leading to ligninolysis originates from the termite digestive cells or from the endosymbionts present in their digestive tract lumen remains to be defined. Key words: Isoptera, Reticulitermes lucifugus var. santonensis, wood, lignin, spruce, poplar.


1979 ◽  
Vol 27 (4) ◽  
pp. 377 ◽  
Author(s):  
G Scurfield

Light microscopy, scanning electron microscopy, X-ray diffraction and differential thermal analysis have been used to examine the structure and mineralogical make-up of 79 Australian petrified woods. Initiation of petrifaction appears to rely on the provision of a substrate with inherent porosity, with the substrate components chemically rather inert and only slowly degraded at normal temperatures and pressures under conditions probably most often acid and tending to anaerobic, and the pores sufficiently large to allow access of an appropriate mineral in ionic or colloidal form in water. Stages in the process include entry of mineral solution into the wood via splits or checks, cell lumina, and other voids; permeation of cell walls; progressive dissolution of cell wall components beginning largely with lignin and accompanied by a build-up of a mineral framework adequate for maintaining the dimensional stability of the wood; mineral deposition in cell lumina after cell wall replacement as a continuous, intermittent, perhaps separate, but not obligatory event; mineral deposition in voids present or formed by dissolution of intercellular substance as a separate, but not obligatory event; and final lithification involving loss of water and perhaps replacement of one mineral by another.


1976 ◽  
Vol 54 (1-2) ◽  
pp. 173-176 ◽  
Author(s):  
Hayden N. Pritchard ◽  
James A. Hall

Glochids of two species of cactus were analyzed using infrared spectrophotometry and x-ray diffraction to determine their chemical constituency. The results were compared with calcium oxalate, a known constituent of many plant crystals, and with pure cellulose, the major component of plant cell walls. The analysis showed the glochids to be pure crystalline cellulose.


1982 ◽  
Vol 28 (5) ◽  
pp. 531-535 ◽  
Author(s):  
E. F. Schneider ◽  
W. L. Seaman

Samples of 7-day-old septate conidia (mature conidia) and newly released aseptate ones (immature conidia) of Fusarium sulphureum were hydrolyzed successively in KOH, acetic acid – H2O2, and H2SO4. The cell wall residue of the mature conidia remained intact throughout the hydrolysis but that of immature conidia dissolved in the H2SO4. Thus, the immature conidial cell wall is substantially different from that of mature conidial cells or growing hyphae and the cell wall undergoes a structural transformation following conidium release from the conidiogenous cell. X-ray diffraction analyses of the wall residues following KOH and acetic acid – H2O2 hydrolysis showed that the mature conidial wall residue had a crystalline chitin component, while the residue of the immature conidial wall was more amorphous and had smaller crystals. An X-ray diffraction pattern of the dissolved immature conidial wall that was recovered from the H2SO4 hydrolysate showed that it contained crystalline chitin.Infrared spectroscopic analysis of the mature conidial cell wall residue showed absorption bands due to inter- and intra-molecular hydrogen bonding and for hydrogen stretching associated with crystalline chitin. Such bands were lacking in the immature cell wall analogue.


With a view to extending the work on Valonia , the cell walls of several species of Cladophora have been examined in detail by means of X-ray diffraction photographs and the microscope. The walls are found to consist of layers in which the cellulose chains in any one layer are inclined to those in the preceding and subsequent layers at an angle whose average is less than 90°. The two sets of striations on the layers of the wall correspond closely to the directions of the cellulose chains. Each set of chains forms a spiral round the cell, and the spirals are of opposite sign. One tends to be flat and th e other steep. On the whole, th e steep spiral tends to become steeper on passing from the base of the filament to the tip, and the flat spiral flatter. In any one cell of the filament, the steep spiral is steepest at the end nearer the filament tip and the flat spiral flattest. Wherever such changes in inclination occur, the angle between the chains tends to remain constant. It is suggested that cell elongation is the factor causing the inclination of the steeper spiral to vary, and that the behaviour of the flatter spiral is best explained by the assumption of a protoplasmic mechanism causing a periodic change in the direction of cellulose chains through a constant angle. The development of a branch cell is reviewed and is found to proceed as the above suggestions would indicate.


Author(s):  
T. Gulik-Krzywicki ◽  
M.J. Costello

Freeze-etching electron microscopy is currently one of the best methods for studying molecular organization of biological materials. Its application, however, is still limited by our imprecise knowledge about the perturbations of the original organization which may occur during quenching and fracturing of the samples and during the replication of fractured surfaces. Although it is well known that the preservation of the molecular organization of biological materials is critically dependent on the rate of freezing of the samples, little information is presently available concerning the nature and the extent of freezing-rate dependent perturbations of the original organizations. In order to obtain this information, we have developed a method based on the comparison of x-ray diffraction patterns of samples before and after freezing, prior to fracturing and replication.Our experimental set-up is shown in Fig. 1. The sample to be quenched is placed on its holder which is then mounted on a small metal holder (O) fixed on a glass capillary (p), whose position is controlled by a micromanipulator.


2011 ◽  
Vol 314-316 ◽  
pp. 273-278
Author(s):  
Yu Hua Dong ◽  
Ke Ren ◽  
Qiong Zhou

Linear low density polyethylene (LLDPE) was chemically modified with grafting maleic anhydride (MAH) monomer on its backbone by melting blending. Nano-particles SiO2 was modified by cationic surfactant hexadecyl trimethyl ammonium bromide (CTAB) and anionic surfactant sulfosalicylic acid (SSA) and added to PE coating respectively. Measurement of membrane potential showed that the coating containing modified SiO2 nano-particles had characteristic of ion selectivity. The properties of the different coatings were investigated according to relative industrial standards. Experimental results indicated that PE coating with ion selectivity had better performances, such as adhesion strength, cathodic disbonding and anti-corrosion, than those of coating without ion selectivity. Crystal structure of the coatings before and after alkali corrosion was characterized by Fourier transform infrared spectra (FTIR) and X-ray diffraction (XRD). Structure of the coating without ion selectivity was damaged by NaOH alkali solution, causing mechanical properties being decreased. And the structure of the ion selective coatings was not affected.


Author(s):  
F. Mostefa ◽  
Nasr Eddine Bouhamou ◽  
H.A. Mesbah ◽  
Salima Aggoun ◽  
D. Mekhatria

This work aims to study the feasibility of making a geopolymer cement based on dredged sediments, from the Fergoug dam (Algeria) and to evaluate their construction potential particularly interesting in the field of special cementitious materials. These sediments due to their mineralogical composition as aluminosilicates; are materials that can be used after heat treatment. Sedimentary clays were characterized before and after calcination by X-ray diffraction, ATG / ATD, spectroscopy (FTIR) and XRF analysis. The calcination was carried out on the raw material sieved at 80 μm for a temperature of 750 ° C, for 3.4 and 5 hours. The reactivity of the calcined products was measured using isothermal calorimetric analysis (DSC) on pastes prepared by mixing an alkaline solution of sodium hydroxide (NaOH) 8 M in an amount allowing to have a Na / Al ratio close to 1 (1: 1). Also, cubic mortar samples were prepared with a ratio L / S: 0.8, sealed and cured for 24 hours at 60 ° C and then at room temperature until the day they were submited to mechanical testing. to check the extent of geopolymerization. The results obtained allowed to optimize the calcination time of 5 hours for a better reactivity of these sediments, and a concentration of 8M of sodium hydroxide and more suitable to have the best mechanical performances.


Sign in / Sign up

Export Citation Format

Share Document