Isolation of viruses from drinking water at the Pont-Viau water treatment plant

1981 ◽  
Vol 27 (4) ◽  
pp. 417-420 ◽  
Author(s):  
Pierre Payment

Viruses were isolated from every sample of raw (100 L) and treated (1000 L) water collected at a water treatment plant drawing sewage-contaminated river water. Few plaque-forming isolates were found but cytopathogenic viruses were isolated as frequently in drinking water as in raw water. In drinking water some samples contained more than 1 cytopathogenic unit per litre, but most contained 1–10/100 L. These viruses had not been inactivated or removed by prechlorination, flocculation, filtration, ozonation, and postchlorination. There were no coliforms present and a residual chlorine level had been maintained. Poliovirus type 1 was a frequent isolate but many isolates were nonpoliovirus. The presence of these viruses in drinking water raises questions about the efficacy of some water treatment processes to remove viruses from polluted water.

2009 ◽  
Vol 60 (3) ◽  
pp. 709-715 ◽  
Author(s):  
Kim van Schagen ◽  
Luuk Rietveld ◽  
Alex Veersma ◽  
Robert Babuška

Owing to the nature of the treatment processes, monitoring the processes based on individual online measurements is difficult or even impossible. However, the measurements (online and laboratory) can be combined with a priori process knowledge, using mathematical models, to objectively monitor the treatment processes and measurement devices. The pH measurement is a commonly used measurement at different stages in the drinking water treatment plant, although it is a unreliable instrument, requiring significant maintenance. It is shown that, using a grey-box model, it is possible to assess the measurement devices effectively, even if detailed information of the specific processes is unknown.


2018 ◽  
Vol 6 (2) ◽  
Author(s):  
Petrus Nugro Rahardjo

Regional Drinking Water Company (PDAM) of County Ogan Komering Ilir has two problematic water treatment units. The first is located in Danau Teloko and the other is in the Teluk Gelam. The main problem is that many organic pollutants (namely peat water) contained in raw water. Therefore, PDAM can not be optimal to supply all the needs of drinking water for the community. PDAM have tried to treat the raw water of peat with the process of flocculation and coagulation, but the results did not meet quality standards as drinking water. This research is a trial test to obtain the optimum condition for flocculation and coagulation processes in water treatment. The results were very succesful and get the optimum pH is about 7.5 and a chemical dose of 80 ppm Aluminum Sulphate as the coagulant. Turbidity of water produced is 4 NTU and visually looks very clean. Better to add a synthetic polymer (PAC) as an additive to the process of flocculation and coagulation. Based on calculations, PDAM Danau Teloko will require the amount of coagulant (Aluminum Sulphate) 138.24 kg per day to produce 40 liters of drinking water per second. Keywords : Raw Water, Flocculation, Coagulation,  Water Treatment Plant


2019 ◽  
Vol 19 (6) ◽  
pp. 1579-1586 ◽  
Author(s):  
Xiang-Ren Zhou ◽  
Yi-Li Lin ◽  
Tian-Yang Zhang ◽  
Bin Xu ◽  
Wen-Hai Chu ◽  
...  

Abstract The objective of this research was to study the occurrence and seasonal variations of disinfection by-products (DBPs), including traditional carbonaceous and emerging nitrogenous DBPs, in a full-scale drinking water treatment plant (DWTP) for nearly 2 years. The removal efficiencies of each DBP through the treatment processes were also investigated. This DWTP takes raw water from the Yangtze River in East China. The quality of the raw water used in this DWTP varied with different seasons. The results suggested that DBP concentrations of the finished water were higher in spring (82.33 ± 15.12 μg/L) and summer (117.29 ± 9.94 μg/L) with higher dissolved organic carbon (DOC) levels, but lower in autumn (41.10 ± 5.82 μg/L) and winter (78.47 ± 2.74 μg/L) with lower DOC levels. Due to the increase of bromide concentration in spring and winter, more toxic brominated DBPs increased obviously and took up a greater proportion. In this DWTP, DBP concentrations increased dramatically after pre-chlorination, especially in summer. It is noteworthy that the removal of DBPs during the subsequent treatment was more obvious in spring than in the other three seasons because the pH value is more beneficial to coagulation in spring.


2010 ◽  
pp. 69-73
Author(s):  
Franclin S. Foping

Drinking contaminated water can be harmful to our health. According to the World Health Organization, about 1.8 million people die every year across the world from water-borne diseases mainly caused by polluted drinking water. Furthermore, the cryptosporidium outbreak that happened in Galway in 2007 indicates the urgency to provide appropriate solutions in order to counteract this ominous situation in the country. Water treatment plants (WTP) are basic components of modern water supply and distribution systems. These are engineering systems that purify raw water to specific safety levels. The raw water passes through a series of treatment phases wherein it is processed and purified according to existing safety protocols regulating drinking water. After undergoing a purification step, the drinking water is distributed to the consumers through a network of pipes, pumps and reservoirs. The research presented in this report is focused on the safety of these critical infrastructures. In particular, the ...


Water ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 57 ◽  
Author(s):  
Abderrezzaq Benalia ◽  
Kerroum Derbal ◽  
Antonio Panico ◽  
Francesco Pirozzi

In this study, the use of acorn leaves as a natural coagulant to reduce raw water turbidity and globally improve drinking water quality was investigated. The raw water was collected from a drinking water treatment plant located in Mila (Algeria) with an initial turbidity of 13.0 ± 0.1 NTU. To obtain acorn leaf powder as a coagulant, the acorn leaves were previously cleaned, washed with tap water, dried, ground and then finely sieved. To improve the coagulant activity and, consequently, the turbidity removal efficiency, the fine powder was also preliminarily treated with different solvents, as follows, in order to extract the coagulant agent: (i) distilled water; (ii) solutions of NaCl (0.25; 0.5 and 1 M); (iii) solutions of NaOH (0.025; 0.05 and 0.1 M); and (iv) solutions of HCl (0.025; 0.05 and 0.1 M). Standard Jar Test assays were conducted to evaluate the performance of the coagulant in the different considered operational conditions. Results of the study indicated that at low turbidity (e.g., 13.0 ± 0.1 NTU), the raw acorn leaf powder and those treated with distilled water (DW) were able to decrease the turbidity to 3.69 ± 0.06 and 1.97 ± 0.03 NTU, respectively. The use of sodium chloride solution (AC-NaCl) at 0.5 M resulted in a high turbidity removal efficiency (91.07%) compared to solutions with different concentrations (0.25 and 1 M). Concerning solutions of sodium hydroxide (AC-NaOH) and hydrogen chloride (AC-HCl), the lowest final turbidities of 1.83 ± 0.13 and 0.92 ± 0.02 NTU were obtained when the concentrations of the solutions were set at 0.05 and 0.1 M, respectively. Finally, in this study, other water quality parameters, such as total alkalinity hardness, pH, electrical conductivity and organic matters content, were measured to assess the coagulant performance on drinking water treatment.


1970 ◽  
Vol 23 (2) ◽  
pp. 133-136 ◽  
Author(s):  
M Alamgir Hossain ◽  
Tahmina Begum ◽  
ANM Fakhruddin ◽  
Sirajul Islam Khan

Bacteriological and physicochemical parameters of the raw and treated water of the Saidabad Water Treatment Plant were analysed during the period January through December 2004. It was found that during dry season Sitalakhya River water was adversely polluted and most of the bacteriological and physicochemical parameters increased to an alarming level. Total coliform and thermotolerant-coliform counts of raw water were highest in months of January through March and lowest during the months of April through November. Ammonia concentration of the raw water was very high (3.08-7.06 mg/l) during the dry months from January to April that coincided with high (2.57-6.08 mg/l) ammonia contamination in the treated water. The others physicochemical parameters like turbidity, conductivity, total dry solid (TDS), hardness and alkalinity were high during the dry months. The residual chlorine in treated water was always below 0.50 mg/l. The study clearly indicated that the load of coliform increased when the concentration of ammonia was high in raw water that, to some extent, influenced the aesthetic properties of the treated water like turbidity, colour, taste, odour, alkalinity, TDS, etc. In spit of that the treated water could be used for domestic and drinking purposes for most of the year. Keywords: Water quality, Total coliform, Thermotolerant-coliform, Ammonia, Physicochemical properties, Residual chlorine   DOI: http://dx.doi.org/10.3329/bjm.v23i2.878 Bangladesh J Microbiol, Volume 23, Number 2, December 2006, pp 133-136


2016 ◽  
Vol 51 (2) ◽  
pp. 81-96 ◽  
Author(s):  
Mohamed A. Hamouda ◽  
William B. Anderson ◽  
Michele I. Van Dyke ◽  
Ian P. Douglas ◽  
Stéphanie D. McFadyen ◽  
...  

While traditional application of quantitative microbial risk assessment (QMRA) models usually stops at analyzing the microbial risk under typical operating conditions, this paper proposes the use of scenario-based risk assessment to predict the impact of potential challenges on the expected risk. This study used a QMRA model developed by Health Canada to compare 14 scenarios created to assess the increase in risk due to potential treatment failures and unexpected variations in water quality and operating parameters of a water treatment plant. Under regular operating conditions, the annual risk of illness was found to be substantially lower than the acceptable limit. Scenario-based QMRA was shown to be useful in demonstrating which hypothetical treatment failures would be the most critical, resulting in an increased risk of illness. The analysis demonstrated that scenarios incorporating considerable failure in treatment processes resulted in risk levels surpassing the acceptable limit. This reiterates the importance of robust treatment processes and the multi-barrier approach voiced in drinking water safety studies. Knowing the probability of failure, and the risk involved, allows designers and operators to make effective plans for response to treatment failures and/or recovery actions involving potential exposures. This ensures the appropriate allocation of financial and human resources.


Sign in / Sign up

Export Citation Format

Share Document