Antibiotic activity of an isocyanide metabolite of Trichoderma hamatum against rumen bacteria

1985 ◽  
Vol 31 (9) ◽  
pp. 767-772 ◽  
Author(s):  
S. N. Liss ◽  
D. Brewer ◽  
A. Taylor ◽  
G. A. Jones

A metabolite of Trichoderma hamatum, 3-(3-isocyanocyclopent-2-enylidene)propionic acid, was tested for its effects on growth of and carbohydrate metabolism in 11 strains of functionally important rumen bacteria. To standardize the biological activity of this unstable metabolite, a rapid, aerobic disc diffusion assay was developed using Escherichia coli ATCC 11775. In an anaerobic broth dilution assay using a medium lacking rumen fluid and containing a soluble carbohydrate, the minimum inhibitory concentration of the metabolite which completely inhibited growth of the rumen bacteria for 18 h at 39 °C was generally < 10 μg∙mL−1; however, the minimum inhibitory concentrations for Megasphaera elsdenii B159 and Streptococcus bovis Pe18 were 10–25 and 25–64 μg∙mL−1, respectively. In general, the Gram-negative strains were more sensitive than the Gram positive. The minimum inhibitory concentration for Bacteroides ruminicola 23 grown with glucose was 1 μg∙mL−1; for B. ruminicola GA33 (glucose), B. succinogenes S85 (cellobiose), and Succinivibrio dextrinosolvens 24 (maltose), it was 2 μg∙mL−1. When added to a cellulose-containing rumen fluid medium, 1–4 μg∙mL−1 of the metabolite delayed cellulose hydrolysis by B. succinogenes S85, Ruminococcus albus 7, and R. flavefaciens FD1 for up to 4 days, and 6–7 μg∙mL−1 prevented hydrolysis for at least 1 month. In the presence of the metabolite, the proportion of acetate produced from soluble carbohydrate by the majority of strains increased, but with some strains net production of acetate decreased relative to production of other acidic fermentation products. If the metabolite gained entrance to the rumen, a concentration of as little as 1 μg∙mL−1 would probably cause a significant depression of the fermentation and result in nutritional deprivation of the animal.

1983 ◽  
Vol 29 (10) ◽  
pp. 1399-1404 ◽  
Author(s):  
W.-C. Jen ◽  
G. A. Jones

Chetomin, an antibiotic metabolite of Chaetomium spp., was tested in the form of its tetrathiol derivative for its effects on growth and carbohydrate metabolism by five strains of functionally important rumen bacteria. The compound was bacteriostatic for the strains tested and Gram-positive bacteria were more sensitive to inhibition than Gram-negative bacteria. In an anaerobic broth dilution assay using a medium lacking rumen fluid, the minimum inhibitory concentration (MIC) of chetomin which completely inhibited growth of Butyrivibrio fibrisolvens D1 for 18 h at 39 °C was 40 μg∙mL−1. The MICs determined under the same conditions for Megasphaera elsdenii B159, Selenomonas ruminantium GA192, and Succinivibrio dextrinosolvens 24 were 160, 600, and 60 μg∙mL−1, respectively. The MIC for cellulose hydrolysis by Ruminococcus albus 7 was 20 μg∙mL−1. Chetomin at concentrations below the MIC appeared to inhibit the separation and division of cells in cultures of B. fibrisolvens D1. Chetomin consistently stimulated acetate production from glucose by B. fibrisolvens D1, M. elsdenii B159, and S. ruminantium GA192 at the expense of compounds which comprised major soluble end products of fermentation in cultures lacking chetomin.


1975 ◽  
Vol 21 (6) ◽  
pp. 794-801 ◽  
Author(s):  
Chii-Guary Tsai ◽  
G. A. Jones

Eight strains of rumen bacteria capable of degrading phloroglucinol (1,3,5-trihydroxybenzene) under anaerobic conditions were isolated from enrichment cultures of the bovine rumen microflora established in a prereduced medium containing 0.02 M phloroglucinol. Five of the strains were facultatively anaerobic Gram-positive streptococci which were identified as Streptococcus bovis. Three strains of obligately anaerobic Gram-positive cocci were assigned to the genus Coprococcus. Anaerobic cultures of the Streptococcus bovis strains in a 40% rumen fluid medium initially containing 0.02 M phloroglucinol degraded 50–80% of the substrate within 2 days, whereas cultures of the Coprococcus strains degraded more than 80% of the substrate under the same conditions. The Streptococcus bovis strains were incapable of degrading phloroglucinol in brain heart infusion or in the medium of de Man, Rogosa, and Sharpe (MRS broth) incubated aerobically.


1983 ◽  
Vol 50 (3) ◽  
pp. 769-782 ◽  
Author(s):  
J. S. Blake ◽  
D. N. Salter ◽  
R. H. Smith

1. Experiments were carried out in vivo to investigate the pathways of ammonia incorporation into rumen bacteria, bacterial fractions and free amino acids within the bacteria.2. Steers were alternately given two isoenergetic, isonitrogenous diets containing the nitrogen mainly as either urea or decorticated groundnut meal (DCGM). At the end of each period on a given diet, a solution of15NH4Cl was infused into the rumen and samples of rumen contents were removed at 2, 10, 20 and 90 min and 5, 10 and 24 h afterwards. Concentrations of ammonia and its15N enrichment were determined and samples of mixed rumen bacteria were prepared. Bacteria were disrupted ultrasonically and separated into bacterial protein, cell wall and protein-free cell supernatant fractions. Amino acids were separated after hydrolysis and their15N contents determined.3. A rumen fluid circulation pump was developed so that representative samples could be taken at very short time intervals after the introduction of the15N label.4. Rumen pH changes, rumen fluid dilution rates and patterns of rumen ammonia concentrations were consistent with normal rumen metabolism. Net bacterial synthesis (as calculated from the net outflow of bacteria from the rumen) was significantly (P< 0·05) greater with the DCGM diet (12·4 g bacterial N/d) than with the ureadiet (9·24 g bacterial N/d).5. With both diets the15N label rapidly left the rumen ammonia pool and entered the rumen bacteria. Analysis of the bacterial fractions indicated that the label appeared rapidly in the protein-free cell supernatant fraction and more slowly in the bacterial protein and cell wall fractions.6. With the DCGM diet bacteria apparently utilized intracellular label less efficiently than with the urea diet. The proportion of N in the protein-free cell supernatant was higher with the DCGM diet, suggesting increased levels of intracellular amino acids and peptides, following extracellular protein degradation.7. Levels of enrichment of the amino acids alanine and glutamate in the protein-free cell supernatant fraction suggested that the enzymes alanine dehydrogenase (EC1. 4. 1. 1) and glutamate dehydrogenase (EC1. 4. 1. 2 and 1. 4. 1. 4) may be the major enzymes for assimilating ammonia when concentrations of soluble carbohydrate and rumen ammonia are high in the rumen.8. The high levels of intracellular alanine are discussed with reference to publishedwork on the excretion of alanine by rumen bacteria.


2020 ◽  
Vol 21 (11) ◽  
pp. 1129-1137 ◽  
Author(s):  
Somayeh Mirsadeghi ◽  
Masoumeh F. Koudehi ◽  
Hamid R. Rajabi ◽  
Seied M. Pourmortazavi

Background: Herein, we report the biosynthesis procedure to prepare silver nanoparticles as reduction and capping agents with the aqueous plant extract of Perovskia abrotanoides. Methods: The therapeutic application of silver nanoparticles entirely depends on the size and shape of the nanoparticles therefore, their control during the synthesis procedure is so important. The effects of synthesis factors, for example, silver ion concentration, the mass of plant extract, reaction time and extraction temperature, on the size of silver particles were considered and optimized. Several analytical methods were used for the characterization of silver NPs including FT-IR and UV–Vis spectrophotometer, XRD and SEM. Results: The results showed that the mean size of the silver particles was about 51 nm. Moreover, the antibacterial properties of biosynthesized silver NPs were investigated by the minimum inhibitory concentration, minimum bactericidal concentration, and Well-diffusion tests. The minimum inhibitory concentration/ minimum bactericidal concentration values of silver NPs and aqueous plant extract versus Gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) and Gram-negative bacteria (E. coli) were 3.03/0.00, 1.20/0.01, 3.06/0.00, 0.98/1.04, 1.00/0.05 and 1.30/0.03 (mg/mL), respectively. Conclusion: The antimicrobial activity study displayed that the synthesized silver nanoparticles by plant extract have better antimicrobial properties compared to aqueous plant extract of Perovskia abrotanoides.


2016 ◽  
Vol 5 (04) ◽  
pp. 4512
Author(s):  
Jackie K. Obey ◽  
Anthoney Swamy T* ◽  
Lasiti Timothy ◽  
Makani Rachel

The determination of the antibacterial activity (zone of inhibition) and minimum inhibitory concentration of medicinal plants a crucial step in drug development. In this study, the antibacterial activity and minimum inhibitory concentration of the ethanol extract of Myrsine africana were determined for Escherichia coli, Bacillus cereus, Staphylococcus epidermidis and Streptococcus pneumoniae. The zones of inhibition (mm±S.E) of 500mg/ml of M. africana ethanol extract were 22.00± 0.00 for E. coli,20.33 ±0.33 for B. cereus,25.00± 0.00 for S. epidermidis and 18. 17±0.17 for S. pneumoniae. The minimum inhibitory concentration(MIC) is the minimum dose required to inhibit growth a microorganism. Upon further double dilution of the 500mg/ml of M. africana extract, MIC was obtained for each organism. The MIC for E. coli, B. cereus, S. epidermidis and S. pneumoniae were 7.81mg/ml, 7.81mg/ml, 15.63mg/ml and 15.63mg/ml respectively. Crude extracts are considered active when they inhibit microorganisms with zones of inhibition of 8mm and above. Therefore, this study has shown that the ethanol extract of M. africana can control the growth of the four organisms tested.


1994 ◽  
Vol 59 (1) ◽  
pp. 234-238 ◽  
Author(s):  
Karel Waisser ◽  
Jiří Kuneš ◽  
Alexandr Hrabálek ◽  
Želmíra Odlerová

Oxidation of 1-aryltetrazole-5-thiols afforded bis(1-aryltetrazol-5-yl) disulfides. The compounds were tested for antimycobacterial activity against Mycobacterium tuberculosis, M. kansasii, M. avium and M. fortuitum. In the case of M. tuberculosis, the logarithm of minimum inhibitory concentration showed a parabolic dependence on hydrophobic substituent constants. Although the compounds exhibited low to medium activity, the most active derivative, bis(4-chlorophenyltetrazol-5-yl) disulfide (III) was more effective against atypical strains than are the commercial tuberculostatics used as standards.


Sign in / Sign up

Export Citation Format

Share Document