Temperature-dependent pattern of heat shock protein synthesis in psychrophilic and psychrotrophic microorganisms

1986 ◽  
Vol 32 (6) ◽  
pp. 516-521 ◽  
Author(s):  
Kirk L. McCallum ◽  
John J. Heikkila ◽  
William E. Inniss

The patterns of proteins synthesized by the arctic psychrophilic bacterium Res-10 and the psychrotroph Bacillus psychrophilus during various heat shocks up to 32 °C were examined. Both microorganisms were found to display temperature-dependent patterns of heat shock protein synthesis. Elevation of the incubation temperature of the arctic psychrophile from 0 to 15, 20, 25, or 32 °C induced the synthesis of at least 19 heat shock proteins. Imposing similar heat shock upon cells of the psychrotroph resulted in the induction of at least 25 heat shock proteins. Examination of the effect of the transcriptional inhibitor rifampicin on the synthesis of heat shock proteins revealed that the primary control of heat shock protein synthesis lies at the transcriptional level in both microorganisms.

2004 ◽  
Vol 78 (3) ◽  
pp. 243-247 ◽  
Author(s):  
J. Martinez ◽  
J. Perez-Serrano ◽  
W.E. Bernadina ◽  
I. Rincon ◽  
F. Rodriguez-Caabeiro

AbstractChanges in the viability, infectivity and heat shock protein (Hsp) levels are reported in Trichinella spiralis first stage larvae (L1) stored in 199 medium for up to seven days at 37°C. These conditions induce stress that the larvae, eventually, cannot overcome. After three days of storage, the infectivity and viability were unchanged, although higher Hsp70 levels were observed. After this time, larvae gradually lost viability and infectivity, coinciding with a decrease in Hsp70 and Hsp90 and an increase in actin (a housekeeping protein). In addition, a possibly inducible heat shock protein, Hsp90i, appeared as constitutive Hsp90 disappeared. No significant changes in Hsp60 levels were detected at any time. These results suggest that heat shock proteins initially try to maintain homeostasis, but on failing, may be involved in cell death.


1986 ◽  
Vol 6 (6) ◽  
pp. 2267-2270
Author(s):  
R L Hallberg

For Tetrahymena thermophila cells to survive at 43 degrees C, a normally lethal temperature, they require a pretreatment which either elicits the synthesis of heat shock proteins or one which brings about a change in the translational machinery of the cell such that is is not inactivated when transferred to 43 degrees C. In this report I present evidence showing that the latter modification can occur in the complete absence of protein synthesis, indicating that heat shock protein production is not required for the induced thermostabilization of the translational machinery.


1991 ◽  
Vol 11 (12) ◽  
pp. 5937-5944 ◽  
Author(s):  
J Amin ◽  
R Mestril ◽  
R Voellmy

Genes for small heat shock proteins (hsp27 to hsp22) are activated in late third-instar larvae of Drosophila melanogaster in the absence of heat stress. This regulation has been simulated in cultured Drosophila cells in which the genes are activated by the addition of ecdysterone. Sequence elements (HERE) involved in ecdysterone regulation of the hsp27 and hsp23 genes have been defined by transfection studies and have recently been identified as binding sites for ecdysterone receptor. We report here that the hsp27 and hsp23 genes are regulated differently by ecdysterone. The hsp27 gene is activated rapidly by ecdysterone, even in the absence of protein synthesis. In contrast, high-level expression of the hsp23 gene begins only after a lag of about 6 h, is dependent on the continuous presence of ecdysterone, and is sensitive to low concentrations of protein synthesis inhibitors. Transfection experiments with reporter constructs show that this difference in regulation is at the transcriptional level. Synthetic hsp27 or hsp23 HERE sequences confer hsp27- or hsp23-type ecdysterone regulation on a basal promoter. These findings indicate that the hsp27 gene is a primary, and the hsp23 gene is mainly a secondary, hormone-responsive gene. Ecdysterone receptor is implied to play a role in the regulation of both genes.


1986 ◽  
Vol 6 (6) ◽  
pp. 2267-2270 ◽  
Author(s):  
R L Hallberg

For Tetrahymena thermophila cells to survive at 43 degrees C, a normally lethal temperature, they require a pretreatment which either elicits the synthesis of heat shock proteins or one which brings about a change in the translational machinery of the cell such that is is not inactivated when transferred to 43 degrees C. In this report I present evidence showing that the latter modification can occur in the complete absence of protein synthesis, indicating that heat shock protein production is not required for the induced thermostabilization of the translational machinery.


1983 ◽  
Vol 3 (7) ◽  
pp. 647-658 ◽  
Author(s):  
Lashitew Gedamu ◽  
Beverly Culham ◽  
John J. Heikkila

Continuous exposure of Chinook salmon embryo cells to an elevated incubation temperature of 24°C induces the transient expression of a set of heat-shock or stress proteins whereas maintenance of the cells at a higher incubation temperature of 28°C produces a continuous synthesis of these stress proteins. In vitro translation studies suggest that the temperature-dependent temporal pattern of stress-protein synthesis is correlated with the levels of stress-protein mRNA. This was verified using a recombinant-DNA probe complementary to the 70K heat-shock-protein mRNA. A transient increase in the level of the fish heat-shock 70K mRNA was observed in RNA samples isolated from cells continuously exposed at 24°C However, a constant increase in the level of this specific mRNA was found in RNA preparations obtained from cells maintained at 28°C Therefore, the temperature-dependent pattern of fish heat-shockprotein synthesis appears to be directly related to the level of heat-shock-protein mRNA.


1991 ◽  
Vol 11 (12) ◽  
pp. 5937-5944
Author(s):  
J Amin ◽  
R Mestril ◽  
R Voellmy

Genes for small heat shock proteins (hsp27 to hsp22) are activated in late third-instar larvae of Drosophila melanogaster in the absence of heat stress. This regulation has been simulated in cultured Drosophila cells in which the genes are activated by the addition of ecdysterone. Sequence elements (HERE) involved in ecdysterone regulation of the hsp27 and hsp23 genes have been defined by transfection studies and have recently been identified as binding sites for ecdysterone receptor. We report here that the hsp27 and hsp23 genes are regulated differently by ecdysterone. The hsp27 gene is activated rapidly by ecdysterone, even in the absence of protein synthesis. In contrast, high-level expression of the hsp23 gene begins only after a lag of about 6 h, is dependent on the continuous presence of ecdysterone, and is sensitive to low concentrations of protein synthesis inhibitors. Transfection experiments with reporter constructs show that this difference in regulation is at the transcriptional level. Synthetic hsp27 or hsp23 HERE sequences confer hsp27- or hsp23-type ecdysterone regulation on a basal promoter. These findings indicate that the hsp27 gene is a primary, and the hsp23 gene is mainly a secondary, hormone-responsive gene. Ecdysterone receptor is implied to play a role in the regulation of both genes.


1995 ◽  
Vol 182 (3) ◽  
pp. 885-889 ◽  
Author(s):  
D Arnold ◽  
S Faath ◽  
H Rammensee ◽  
H Schild

Vaccination of mice with heat shock proteins isolated from tumor cells induces immunity to subsequent challenge with those tumor cells the heat shock protein was isolated from but not with other tumor cells (Udono, H., and P.K. Srivastava. 1994. J. Immunol. 152:5398-5403). The specificity of this immune response is caused by tumor-derived peptides bound to the heat shock proteins (Udono., H., and P.K. Srivastava. 1993. J. Exp. Med. 178:1391-1396). Our experiments show that a single immunization with the heat shock protein gp96 isolated from beta-galactosidase (beta-gal) expressing P815 cells (of DBA/2 origin) induces cytotoxic T lymphocytes (CTLs) specific for beta-gal, in addition to minor H antigens expressed by these cells. CTLs can be induced in mice that are major histocompatibility complex (MHC) identical to the gp96 donor cells (H-2d) as well as in mice with a different MHC (H-2b). Thus gp96 is able to induce "cross priming" (Matzinger, P., and M.J. Bevan. 1977. Cell. Immunol. 33:92-100), indicating that gp96-associated peptides are not limited to the MHC class I ligands of the gp96 donor cell. Our data confirm the notion that samples of all cellular antigens presentable by MHC class I molecules are represented by peptides associated with gp96 molecules of that cell, even if the fitting MHC molecule is not expressed. In addition, we extend previous reports on the in vivo immunogenicity of peptides associated gp96 molecules to two new groups of antigens, minor H antigens, and proteins expressed in the cytosol.


1991 ◽  
Vol 11 (10) ◽  
pp. 4998-5004
Author(s):  
M K Bagchi ◽  
S Y Tsai ◽  
M J Tsai ◽  
B W O'Malley

Steroid receptors regulate transcription of target genes in vivo and in vitro in a steroid hormone-dependent manner. Unoccupied progesterone receptor exists in the low-salt homogenates of target cells as a functionally inactive 8 to 10S complex with several nonreceptor components such as two molecules of 90-kDa heat shock protein (hsp90), a 70-kDa heat shock protein (hsp70), and a 56-kDa heat shock protein (hsp56). Ligand-induced dissociation of receptor-associated proteins such as hsp90 has been proposed as the mechanism of receptor activation. Nevertheless, it has not been established whether, beyond release of heat shock proteins, the steroidal ligand plays a role in modulating receptor activity. To examine whether the release of these nonreceptor proteins from receptor complex results in a constitutively active receptor, we isolated an unliganded receptor form essentially free of hsp90, hsp70, and hsp56. Using a recently developed steroid hormone-responsive cell-free transcription system, we demonstrate for the first time that the dissociation of heat shock proteins is not sufficient to generate a functionally active receptor. This purified receptor still requires hormone for high-affinity binding to a progesterone response element and for efficient transcriptional activation of a target gene. When an antiprogestin, Ru486, is bound to the receptor, it fails to promote efficient transcription. We propose that in the cell, in addition to the release of receptor-associated inhibitory proteins, a distinct hormone-mediated activation event must precede efficient gene activation.


Sign in / Sign up

Export Citation Format

Share Document