Structural basis for phosphorylation-dependent signaling in the DNA-damage response

2005 ◽  
Vol 83 (6) ◽  
pp. 721-727 ◽  
Author(s):  
R Scott Williams ◽  
Nina Bernstein ◽  
Megan S Lee ◽  
Melissa L Rakovszky ◽  
Diana Cui ◽  
...  

The response of eukaryotic cells to DNA damage requires a multitude of protein–protein interactions that mediate the ordered repair of the damage and the arrest of the cell cycle until repair is complete. Two conserved protein modules, BRCT and forkhead-associated (FHA) domains, play key roles in the DNA-damage response as recognition elements for nuclear Ser/Thr phosphorylation induced by DNA-damage-responsive kinases. BRCT domains, first identified at the C-terminus of BRCA1, often occur as multiple tandem repeats of individual BRCT modules. Our recent structural and functional work has revealed how BRCT repeats recognize phosphoserine protein targets. It has also revealed a secondary binding pocket at the interface between tandem repeats, which recognizes the amino-acid 3 residues C-terminal to the phosphoserine. We have also studied the molecular function of the FHA domain of the DNA repair enzyme, polynucleotide kinase (PNK). This domain interacts with threonine-phosphorylated XRCC1 and XRCC4, proteins responsible for the recruitment of PNK to sites of DNA-strand-break repair. Our studies have revealed a flexible mode of recognition that allows PNK to interact with numerous negatively charged substrates.Key words: BRCA1, BRCT, PNK, FHA, polynucleotide kinase, breast cancer, phosphopeptide-protein interactions, DNA damage response.

2014 ◽  
Vol 70 (a1) ◽  
pp. C1642-C1642
Author(s):  
Aya Toma ◽  
Tomio Takahashi ◽  
Yusuke Sato ◽  
Sakurako Goto-Ito ◽  
Atsushi Yamagata ◽  
...  

Double-strand break (DSB) and interstrand crosslink (ICL) are serious damages in DNA. Responses to these DNA damages include ubiquitination of damaged chromatin and other substrates, which recruit protein complexes required for DNA repair. Therefore, many proteins involved in DNA damage response contain ubiquitin-binding modules. For instance, a ubiquitin ligase RNF168, which catalyzes K63-linked polyubiquitination of histone H2A, contains two types of ubiquitin binding motifs, MIU (motif interacting with ubiquitin) and UIM (UIM and MIU-related Ub-binding domain). FAAP20, which recruits Fanconi anemia proteins (crosslink-repair factors), contains a UBZ (ubiquitin-binding zinc finger) domain. To date, mechanisms for ubiquitin recognition by UMI and UBZ domains have remained unclear. In this study, we determined crystal structures of RNF168 UMI and FAAP20 UBZ in complex with ubiquitin at 1.9 Å resolutions, respectively. SPR analyses using UMI and UBZ mutants, which were designed to disrupt Ub binding, confirmed that the observed interactions between Ub and UMI or UBZ are critical for binding. Our structure and the accompanying in-vitro structure-based mutagenesis experiments reveal the structural basis of these important recognition events.


2021 ◽  
Author(s):  
Kerry Silva McPherson ◽  
Dmitry Korzhnev

Cellular DNA damage response (DDR) is an extensive signaling network that orchestrates DNA damage recognition, repair and avoidance, cell cycle progression and cell death. DDR alternation is a hallmark of...


2013 ◽  
Vol 33 (16) ◽  
pp. 3286-3298 ◽  
Author(s):  
Zhongqi Ge ◽  
Devi Nair ◽  
Xiaoyan Guan ◽  
Neha Rastogi ◽  
Michael A. Freitas ◽  
...  

The best-characterized acetylation of newly synthesized histone H4 is the diacetylation of the NH2-terminal tail on lysines 5 and 12. Despite its evolutionary conservation, this pattern of modification has not been shown to be essential for either viability or chromatin assembly in any model organism. We demonstrate that mutations in histone H4 lysines 5 and 12 in yeast confer hypersensitivity to replication stress and DNA-damaging agents when combined with mutations in histone H4 lysine 91, which has also been found to be a site of acetylation on soluble histone H4. In addition, these mutations confer a dramatic decrease in cell viability when combined with mutations in histone H3 lysine 56. We also show that mutation of the sites of acetylation on newly synthesized histone H4 results in defects in the reassembly of chromatin structure that accompanies the repair of HO-mediated double-strand breaks. This defect is not due to a decrease in the level of histone H3 lysine 56 acetylation. Intriguingly, mutations that alter the sites of newly synthesized histone H4 acetylation display a marked decrease in levels of phosphorylated H2A (γ-H2AX) in chromatin surrounding the double-strand break. These results indicate that the sites of acetylation on newly synthesized histones H3 and H4 can function in nonoverlapping ways that are required for chromatin assembly, viability, and DNA damage response signaling.


FEBS Letters ◽  
2011 ◽  
Vol 585 (24) ◽  
pp. 3874-3879 ◽  
Author(s):  
Wei Yan ◽  
Zhenhua Shao ◽  
Fudong Li ◽  
Liwen Niu ◽  
Yunyu Shi ◽  
...  

Genetics ◽  
2021 ◽  
Author(s):  
Tingting Li ◽  
Ruben C Petreaca ◽  
Susan L Forsburg

Abstract Chromatin remodeling is essential for effective repair of a DNA double strand break. KAT5 (S. pombe Mst1, human TIP60) is a MYST family histone acetyltransferase conserved from yeast to humans that coordinates various DNA damage response activities at a DNA double strand break (DSB), including histone remodeling and activation of the DNA damage checkpoint. In S. pombe, mutations in mst1+ causes sensitivity to DNA damaging drugs. Here we show that Mst1 is recruited to DSBs. Mutation of mst1+ disrupts recruitment of repair proteins and delays resection. These defects are partially rescued by deletion of pku70, which has been previously shown to antagonize repair by homologous recombination. These phenotypes of mst1 are similar to pht1-4KR, a non-acetylatable form of histone variant H2A.Z, which has been proposed to affect resection. Our data suggest that Mst1 functions to direct repair of DSBs towards homologous recombination pathways by modulating resection at the double strand break.


2009 ◽  
Vol 29 (13) ◽  
pp. 3597-3604 ◽  
Author(s):  
Nazmul Huda ◽  
Hiromi Tanaka ◽  
Marc S. Mendonca ◽  
David Gilley

ABSTRACT Protein kinases of the phosphatidylinositol 3-kinase-like kinase family, originally known to act in maintaining genomic integrity via DNA repair pathways, have been shown to also function in telomere maintenance. Here we focus on the functional role of DNA damage-induced phosphorylation of the essential mammalian telomeric DNA binding protein TRF2, which coordinates the assembly of the proteinaceous cap to disguise the chromosome end from being recognized as a double-stand break (DSB). Previous results suggested a link between the transient induction of human TRF2 phosphorylation at threonine 188 (T188) by the ataxia telangiectasia mutated protein kinase (ATM) and the DNA damage response. Here, we report evidence that X-ray-induced phosphorylation of TRF2 at T188 plays a role in the fast pathway of DNA DSB repair. These results connect the highly transient induction of human TRF2 phosphorylation to the DNA damage response machinery. Thus, we find that a protein known to function in telomere maintenance, TRF2, also plays a functional role in DNA DSB repair.


2018 ◽  
Vol 46 (5) ◽  
pp. 2479-2494 ◽  
Author(s):  
Yunfeng Lin ◽  
Liping Bai ◽  
Steven Cupello ◽  
Md Akram Hossain ◽  
Bradley Deem ◽  
...  

Circulation ◽  
2015 ◽  
Vol 132 (suppl_3) ◽  
Author(s):  
Tomoaki Higo ◽  
Atsuhiko Naito ◽  
Masato Shibamoto ◽  
Jong-Kook Lee ◽  
Shungo Hikoso ◽  
...  

Introduction: The DNA damage response (DDR) pathway is activated upon DNA damage. In mitotic cells, the DDR plays essential role in maintaining genomic stability and preventing cancer formation. DNA damage and activation of the DDR are also observed in the post-mitotic cardiomyocytes of patients with end-stage heart failure, however, their roles in the pathogenesis of heart failure remains elusive. Methods and Results: We performed transverse aortic constriction (TAC) operation to produce mice model of pressure-overload induced heart failure. Alkaline- and neutral- comet assay revealed that unrepaired DNA single-strand break (SSB), not double-strand break, is accumulated in cardiomyocytes of the failing heart. Mice with cardiomyocyte-specific deletion of XRCC1, a scaffold protein essential for SSB repair, exhibited more severe heart failure and higher mortality after TAC operation. Knockdown of Xrcc1 using siRNA produced SSB accumulation in cardiomyocytes and SSB accumulation induced persistent DDR through activation of ataxia telangiectasia mutated (ATM) kinase. Activated ATM also induced nuclear translocation of NF-κB and increased the expression of inflammatory cytokines. Activation of DDR, nuclear translocation of NF-κB, and increased expression of inflammatory cytokines were also observed in the failing heart and were enhanced in the heart of cardiomyocyte-specific XRCC1 knockout mice. Conclusions: Unrepaired DNA SSB accumulates in post-mitotic cardiomyocytes and plays a pathogenic role in pressure overload-induced heart failure. Approaches that promote efficient SSB repair or suppress aberrant activation of DDR pathway may become a novel therapeutic strategy against heart failure.


Oncogene ◽  
2012 ◽  
Vol 31 (45) ◽  
pp. 4803-4809 ◽  
Author(s):  
C Lemaître ◽  
B Fischer ◽  
A Kalousi ◽  
A-S Hoffbeck ◽  
J Guirouilh-Barbat ◽  
...  

2009 ◽  
Vol 186 (6) ◽  
pp. 835-847 ◽  
Author(s):  
Jurgen A. Marteijn ◽  
Simon Bekker-Jensen ◽  
Niels Mailand ◽  
Hannes Lans ◽  
Petra Schwertman ◽  
...  

Chromatin modifications are an important component of the of DNA damage response (DDR) network that safeguard genomic integrity. Recently, we demonstrated nucleotide excision repair (NER)–dependent histone H2A ubiquitination at sites of ultraviolet (UV)-induced DNA damage. In this study, we show a sustained H2A ubiquitination at damaged DNA, which requires dynamic ubiquitination by Ubc13 and RNF8. Depletion of these enzymes causes UV hypersensitivity without affecting NER, which is indicative of a function for Ubc13 and RNF8 in the downstream UV–DDR. RNF8 is targeted to damaged DNA through an interaction with the double-strand break (DSB)–DDR scaffold protein MDC1, establishing a novel function for MDC1. RNF8 is recruited to sites of UV damage in a cell cycle–independent fashion that requires NER-generated, single-stranded repair intermediates and ataxia telangiectasia–mutated and Rad3-related protein. Our results reveal a conserved pathway of DNA damage–induced H2A ubiquitination for both DSBs and UV lesions, including the recruitment of 53BP1 and Brca1. Although both lesions are processed by independent repair pathways and trigger signaling responses by distinct kinases, they eventually generate the same epigenetic mark, possibly functioning in DNA damage signal amplification.


Sign in / Sign up

Export Citation Format

Share Document