scholarly journals Nucleosome distribution and linker DNA: connecting nuclear function to dynamic chromatin structureThis paper is one of a selection of papers published in a Special Issue entitled 31st Annual International Asilomar Chromatin and Chromosomes Conference, and has undergone the Journal’s usual peer review process.

2011 ◽  
Vol 89 (1) ◽  
pp. 24-34 ◽  
Author(s):  
Heather J. Szerlong ◽  
Jeffrey C. Hansen

Genetic information in eukaryotes is managed by strategic hierarchical organization of chromatin structure. Primary chromatin structure describes an unfolded nucleosomal array, often referred to as “beads on a string”. Chromatin is compacted by the nonlinear rearrangement of nucleosomes to form stable secondary chromatin structures. Chromatin conformational transitions between primary and secondary structures are mediated by both nucleosome-stacking interactions and the intervening linker DNA. Chromatin model system studies find that the topography of secondary structures is sensitive to the spacing of nucleosomes within an array. Understanding the relationship between nucleosome spacing and higher order chromatin structure will likely yield important insights into the dynamic nature of secondary chromatin structure as it occurs in vivo. Genome-wide nucleosome mapping studies find the distance between nucleosomes varies, and regions of uniformly spaced nucleosomes are often interrupted by regions of nonuniform spacing. This type of organization is found at a subset of actively transcribed genes in which a nucleosome-depleted region near the transcription start site is directly adjacent to uniformly spaced nucleosomes in the coding region. Here, we evaluate secondary chromatin structure and discuss the structural and functional implications of variable nucleosome distributions in different organisms and at gene regulatory junctions.

2006 ◽  
Vol 84 (4) ◽  
pp. 528-535 ◽  
Author(s):  
Benoît Guillemette ◽  
Luc Gaudreau

It is now well established that cells modify chromatin to set transcriptionally active or inactive regions. Such control of chromatin structure is essential for proper development of organisms. In addition to the growing number of histone post-translational modifications, cells can exchange canonical histones with different variants that can directly or indirectly change chromatin structure. Moreover, enzymatic complexes that can exchange specific histone variants within the nucleosome have now been identified. One such variant, H2A.Z, has recently been the focus of many studies. H2A.Z is highly conserved in evolution and has many different functions, while defining both active and inactive chromatin in different contexts. Advanced molecular techniques, such as genome-wide binding assays (chromatin immunoprecipitation on chip) have recently given researchers many clues as to how H2A.Z is targeted to chromatin and how it affects nuclear functions. We wish to review the recent literature and summarize our understanding of the mechanisms and functions of H2A.Z.


2016 ◽  
Vol 60 (6) ◽  
pp. 3786-3793 ◽  
Author(s):  
Isabel Gallego ◽  
Julie Sheldon ◽  
Elena Moreno ◽  
Josep Gregori ◽  
Josep Quer ◽  
...  

Sofosbuvir displays a high phenotypic barrier to resistance, and it is a component of several combination therapies for hepatitis C virus (HCV) infections. HCV fitness can be a determinant of decreased sensitivity to direct-acting antiviral agents such as telaprevir or daclatasvir, but fitness-dependent decreased drug sensitivity has not been established for drugs with a high phenotypic barrier to resistance. Low- and high-fitness HCV populations and biological clones derived from them were used to infect Huh-7.5 hepatoma cells. Sofosbuvir efficacy was analyzed by measuring virus progeny production during several passages and by selection of possible sofosbuvir resistance mutations determined by sequencing the NS5B-coding region of the resulting populations. Sofosbuvir exhibited reduced efficacy against high-fitness HCV populations, without the acquisition of sofosbuvir-specific resistance mutations. A reduced sofosbuvir efficacy, similar to that observed with the parental populations, was seen for high-fitness individual biological clones. In independently derived high-fitness HCV populations or clones passaged in the presence of sofosbuvir, M289L was selected as the only substitution in the viral polymerase NS5B. In no case was the sofosbuvir-specific resistance substitution S282T observed. High HCV fitness can lead to decreased sensitivity to sofosbuvir, without the acquisition of specific sofosbuvir resistance mutations. Thus, fitness-dependent drug sensitivity can operate with HCV inhibitors that display a high barrier to resistance. This mechanism may underlie treatment failures not associated with selection of sofosbuvir-specific resistance mutations, linked toin vivofitness of pretreatment viral populations.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3633-3633
Author(s):  
Louis C. Dore ◽  
Christopher R. Vakoc ◽  
Gerd A. Blobel ◽  
Ross C. Hardison ◽  
David M. Bodine ◽  
...  

Abstract Alpha Hemoglobin Stabilizing Protein (AHSP, Eraf) is an abundant erythroid protein that binds and stabilizes alpha globin and alpha hemoglobin (Hb). In mice, loss of AHSP causes hemolytic anemia, with elevated levels of reactive oxygen species and Hb precipitation in erythrocytes. Loss of AHSP exacerbates beta thalassemia phenotypes in mice, presumably by enhancing the toxicity of excessive free alpha Hb. Based on these findings, AHSP is a candidate modifier gene for beta thalassemia in humans. No mutations in the AHSP coding region have been identified in patients to date. However, several groups reported an inverse correlation between beta thalassemia severity and erythroid AHSP expression levels, raising the possibility that AHSP is a quantitative trait modifier of beta thalassemia. To address this possibility, it is important to define the mechanisms that control expression of the AHSP gene. Transcripts of murine Ahsp are inducible by GATA-1. The goals of the current studies are to investigate the mechanisms of this induction and to define the DNA domain that regulates the locus. Using phylogenetic comparisons, we identified a hotspot for mammalian chromosomal rearrangement just downstream of the Ahsp gene. This hotspot is located at the end of a syntenic block of approximately 350 kb that is conserved in mammals and likely marks the 3′ end of the gene regulatory domain. We focused our initial functional studies on a 7 kb genomic region bounded at the 5′ (centromeric) end of Ahsp by the nearest adjacent gene, an EST expressed in multiple tissues, and at the 3′ (telomeric) end by the rearrangement hotspot. In transient transfection assays, the Ahsp promoter region conferred erythroid-specific expression to a linked reporter gene. In heterologous cells, GATA-1 transactivated the Ahsp promoter in a dose-dependent fashion. To examine GATA-1 binding and its subsequent effects on the Ahsp gene in vivo, we used G1E-ER4 cells, a GATA-1 null erythroblast line that undergoes terminal erythroid maturation after activation of an estradiol-inducible form of GATA-1. We made several findings with regards to the role of GATA-1 in Ahsp gene regulation. First, GATA-1 and its cofactor, Friend of GATA-1 (FOG-1), bind directly to the Ahsp locus at regions that contain conserved GATA consensus motifs and are predicted to be important erythroid regulatory elements by our bioinformatic studies. Second, GATA-1 induces epigenetic changes in chromatin structure that are associated with gene activation, including formation of a DNase I hypersensitive site, hyperacetylation of histones H3 and H4, and methylation of histone H3 lysine-4. Together, these findings begin to establish the DNA region and mechanisms that control Ahsp transcription, allowing for further studies to map the cis elements responsible for population variations in gene expression.


1994 ◽  
Vol 14 (1) ◽  
pp. 318-326 ◽  
Author(s):  
R Lucchini ◽  
J M Sogo

Replication intermediates containing forks arrested at the replication fork barrier near the 3' end of the yeast rRNA genes were analyzed at the chromatin level by using in vivo psoralen cross-linking as a probe for chromatin structure. These specific intermediates were purified from preparative two-dimensional agarose gels, and the extent of cross-linking in the different portions of the branched molecules was examined by electron microscopy and by using a psoralen gel retardation assay. The unreplicated section corresponding to the rRNA coding region upstream of the arrested forks appeared mostly heavily cross-linked, characteristic of transcriptionally active rRNA genes devoid of nucleosomes, whereas the replicated daughter strands representing newly synthesized spacer sequences showed a nucleosomal organization typical for bulk chromatin. The failure to detect replication forks arrested at the 3' end of inactive rRNA gene copies and the fact that most DNA encoding rRNA (rDNA) is replicated in the same direction as transcription suggest that replication forks seldom originate from origins of replication located immediately downstream of inactive genes.


2006 ◽  
Vol 84 (4) ◽  
pp. 605-630 ◽  
Author(s):  
Ryan Heit ◽  
D. Alan Underhill ◽  
Gordon Chan ◽  
Michael J. Hendzel

In the midst of an increasingly detailed understanding of the molecular basis of genome regulation, we still only vaguely understand the relationship between molecular biochemistry and the structure of the chromatin inside of cells. The centromere is a structurally and functionally unique region of each chromosome and provides an example in which the molecular understanding far exceeds the understanding of the structure and function relationships that emerge on the chromosomal scale. The centromere is located at the primary constriction of the chromosome. During entry into mitosis, the centromere specifies the assembly site of the kinetochore, the structure that binds to microtubules to enable transport of the chromosomes into daughter cells. The epigenetic contributions to the molecular organization and function of the centromere are reviewed in the context of structural mechanisms of chromatin function.


2006 ◽  
Vol 84 (4) ◽  
pp. 411-417 ◽  
Author(s):  
Xu Lu ◽  
Joshua M. Klonoski ◽  
Michael G. Resch ◽  
Jeffrey C. Hansen

Chromatin in a eukaryotic nucleus is condensed through 3 hierarchies: primary, secondary, and tertiary chromatin structures. In vitro, when induced with cations, chromatin can self-associate and form large oligomers. This self-association process has been proposed to mimic processes involved in the assembly and maintenance of tertiary chromatin structures in vivo. In this article, we review 30 years of studies of chromatin self-association, with an emphasis on the evidence suggesting that this in vitro process is physiologically relevant.


2010 ◽  
Vol 88 (2) ◽  
pp. 359-369 ◽  
Author(s):  
Jeremy L. England ◽  
Vijay S. Pande

Water permeates all life, and mediates forces that are essential to the process of macromolecular self-assembly. Predicting these forces in a given biological context is challenging, since water organizes itself differently next to charged and hydrophobic surfaces, both of which are typically at play on the nanoscale in vivo. In this work, we present a simple statistical mechanical model for the forces water mediates between different confining surfaces, and demonstrate that the model qualitatively unifies a wide range of phenomena known in the simulation literature, including several cases of protein folding under confinement.


2006 ◽  
Vol 84 (4) ◽  
pp. 405-410 ◽  
Author(s):  
Piotr Widlak ◽  
William T. Garrard

The gold standard for studies of nucleosomal chromatin structure for the past 30 years has been the enzyme micrococcal nuclease (MNase). During the course of our studies on the elucidation of the mechanism of action of the apoptotic nuclease DNA fragmentation factor-40 / caspase-activated deoxyribonuclease (DFF40/CAD) on naked DNA and chromatin substrates, it became clear that this enzyme is superior in certain respects to MNase for studying several aspects of chromatin structure. Here we review our published results supporting this statement. Relative to MNase, we have found that DFF40/CAD has the following properties: (i) it does not cut within nucleosomes to generate subnucleosomal DNA fragments; (ii) it is more specific for the linker regions between nucleosomes; (iii) it lacks exonuclease activity; (iv) it is specific for double-stranded DNA and makes exclusively double-stranded breaks; and (v) it attacks histone-H1-containing chromatin more efficiently. Taken together, these facts explain why DFF40/CAD generates sharper oligonucleosomal DNA ladders compared with those generated by MNase. We therefore recommend the following uses for DFF40/CAD for chromatin research: nucleosome isolation, chromatin-remodeling assays, repeat length measurements, and nucleosome-positioning assays along specific sequences. Other uses include footprinting assays of transcription factor positions, shearing chromatin for immunopreciptitation experiments (ChIP), and shearing DNA for recombinant DNA library preparation or for shotgun cloning for sequencing.


2008 ◽  
Vol 86 (2) ◽  
pp. 92-99 ◽  
Author(s):  
Taek Jin Kang ◽  
Hiroaki Suga

It is well known that standard peptides, which comprise proteinogenic amino acids, can act as specific chemical probes to target proteins with high affinity. Despite this fact, a number of peptide drug leads have been abandoned because of their poor cell permeability and protease instability. On the other hand, nonstandard peptides isolated as natural products often exhibit remarkable pharmaco-behavior and stability in vivo. Although it is likely that numerous nonstandard therapeutic peptides capable of recognizing various targets could have been synthesized, enzymes for nonribosomal peptide syntheses are complex; therefore, it is difficult to engineer such modular enzymes to build nonstandard peptide libraries. Here we describe an emerging technology for the synthesis of nonstandard peptides that employs an integrated system of reconstituted cell-free translation and flexizymes. We summarize the historical background of this technology and discuss its current and future applications to the synthesis of nonstandard peptides and drug discovery.


2009 ◽  
Vol 87 (1) ◽  
pp. 189-206 ◽  
Author(s):  
Nikhil Raghuram ◽  
Gustavo Carrero ◽  
John Th’ng ◽  
Michael J. Hendzel

The histone H1 family of nucleoproteins represents an important class of structural and architectural proteins that are responsible for maintaining and stabilizing higher-order chromatin structure. Essential for mammalian cell viability, they are responsible for gene-specific regulation of transcription and other DNA-dependent processes. In this review, we focus on the wealth of information gathered on the molecular kinetics of histone H1 molecules using novel imaging techniques, such as fluorescence recovery after photobleaching. These experiments have shed light on the effects of H1 phosphorylation and core histone acetylation in influencing chromatin structure and dynamics. We also delineate important concepts surrounding the C-terminal domain of H1, such as the intrinsic disorder hypothesis, and how it affects H1 function. Finally, we address the biochemical mechanisms behind low-affinity H1 binding.


Sign in / Sign up

Export Citation Format

Share Document