Epigenetic regulation of centromere formation and kinetochore functionThis paper is one of a selection of papers published in this Special Issue, entitled 27th International West Coast Chromatin and Chromosome Conference, and has undergone the Journal's usual peer review process.

2006 ◽  
Vol 84 (4) ◽  
pp. 605-630 ◽  
Author(s):  
Ryan Heit ◽  
D. Alan Underhill ◽  
Gordon Chan ◽  
Michael J. Hendzel

In the midst of an increasingly detailed understanding of the molecular basis of genome regulation, we still only vaguely understand the relationship between molecular biochemistry and the structure of the chromatin inside of cells. The centromere is a structurally and functionally unique region of each chromosome and provides an example in which the molecular understanding far exceeds the understanding of the structure and function relationships that emerge on the chromosomal scale. The centromere is located at the primary constriction of the chromosome. During entry into mitosis, the centromere specifies the assembly site of the kinetochore, the structure that binds to microtubules to enable transport of the chromosomes into daughter cells. The epigenetic contributions to the molecular organization and function of the centromere are reviewed in the context of structural mechanisms of chromatin function.

2011 ◽  
Vol 89 (1) ◽  
pp. 35-44 ◽  
Author(s):  
Tamara L. Caterino ◽  
Jeffrey J. Hayes

Linker histones are multifunctional proteins that are involved in a myriad of processes ranging from stabilizing the folding and condensation of chromatin to playing a direct role in regulating gene expression. However, how this class of enigmatic proteins binds in chromatin and accomplishes these functions remains unclear. Here we review data regarding the H1 structure and function in chromatin, with special emphasis on the C-terminal domain (CTD), which typically encompasses approximately half of the mass of the linker histone and includes a large excess of positively charged residues. Owing to its amino acid composition, the CTD was previously proposed to function in chromatin as an unstructured polycation. However, structural studies have shown that the CTD adopts detectable secondary structure when interacting with DNA and macromolecular crowding agents. We describe classic and recent experiments defining the function of this domain in chromatin folding and emerging data indicating that the function of this protein may be linked to intrinsic disorder.


2009 ◽  
Vol 87 (1) ◽  
pp. 93-105 ◽  
Author(s):  
Melanie A. Adams-Cioaba ◽  
Jinrong Min

Chromatin structure is regulated by chromatin remodeling factors, histone exchange, linker histone association, and histone modification. Covalent modification of histones is an important factor in the regulation of the associated processes. The implementation and removal of various histone modifications have been implicated in DNA replication, repair, recombination, and transcription, and in RNA processing. In recent years, histone methylation has emerged as one of the key modifications regulating chromatin function. However, the mechanisms involved are complex and not well understood. A large volume of structural and biochemical information has been recently amassed for the Tudor, plant homeodomain (PHD), and malignant brain tumor (MBT) protein families. This review summarizes current knowledge of the structures and modes of recognition employed by the PHD, Tudor, and MBT domains in their interactions with target histone peptides.


2007 ◽  
Vol 85 (2) ◽  
pp. 203-208 ◽  
Author(s):  
Hongmei Dong ◽  
Xiaohu Xu ◽  
Mohong Deng ◽  
Xiaojun Yu ◽  
Hu Zhao ◽  
...  

The aim of the study was to prepare an active recombinant human perforin by comparing 5 candidate segments of human perforin. Full-length perforin, MAC1 (28–349 aa), MAC2 (166–369 aa), C-100, and N-60 of human perforin were selected as candidate active segments and designated, respectively, HP1, HP2, HP3, HP4, and HP5. The target genes were amplified by PCR and the products were individually subcloned into pGEM-T. The genes for HP1, HP2, HP3, and HP5 were subcloned into pET-DsbA, whereas pET-41a (+) was used as the expression vector of HP4. The fusion proteins were expressed in Escherichia coli BL21pLysS(DE3) and purified using nickel nitrilotriacetic acid (NTA) agarose affinity chromatography. The hemolysis microassay was used as an activity assay of fusion protein. From this study, we obtained the recombinant plasmids pGEM-T-HP1, -HP2, -HP3, -HP4 and -HP5, consisting of 1600, 960, 600, 300bp, and 180, respectively. From these recombinant plasmids, expression plasmids were successfully constructed and expressed in E. coli BL21pLysS(DE3). The resultant fusion proteins, affinity purified using Ni–NTA, were ~80, 58, 45, 44, and 30 kDa, respectively. The recombinant proteins were assayed for activity on hemolysis. HP2 and HP5 were the only recombinant proteins that were active in hemolysis, and the hemolytic function was concentration dependent. These results demonstrate that active recombinant forms of perforin can be synthesized in a prokaryote model. The recombinant N-60 and MAC1 (28–349 aa) of human perforin have the function of forming pores. Our study provides the experimental basis for further investigation on the application of perforin.


2006 ◽  
Vol 84 (3) ◽  
pp. 282-290 ◽  
Author(s):  
Dominique Legrand ◽  
Elisabeth Elass ◽  
Mathieu Carpentier ◽  
Joël Mazurier

The antimicrobial activities of lactoferrin (Lf) depend on its capacity to bind iron and on its direct interaction with the surface of microorganisms. Its protective effect also extends to the regulation of the host response to infections. Depending on the immune status of an individual, Lf can have anti-inflammatory properties that downregulate the immune response and prevent septic shock and damage to tissues. It also acts as a promoter of the activation, differentiation, and (or) proliferation of immune cells. Although most of the anti-inflammatory activities are correlated with the neutralization of proinflammatory molecules by Lf, the promoting activity seems to be related to a direct effect of Lf on immune cells. Although the mechanisms that govern these activities are not clearly defined, and probably differ from cell to cell, several cellular targets and possible mechanisms of action are highlighted. The majority of the molecular targets at the surface of cells are multiligand receptors but, interestingly, most of them have been reported as signaling, endocytosis, and nuclear-targeting molecules. This review focuses on the known and putative mechanisms that allow the immunoregulating effect of Lf in its interactions with immune cells.


PEDIATRICS ◽  
1977 ◽  
Vol 59 (6) ◽  
pp. 821-826 ◽  
Author(s):  
John E. Wennberg ◽  
Lewis Blowers ◽  
Robert Parker ◽  
Alan M. Gittelsohn

Among 13 Vermont Hospital Service Areas, tonsillectomy rates decreased over a five-year period. In 1969, the rates in seven areas exceeded the estimated United States national rate; by 1973, the average rate for all areas had declined 46% and only one area remained above the U.S. rate. Much of the change occurred after feedback of data to the Vermont State Medical Society demonstrating 1969 variations. In 12 of the 13 areas, the relationship between feedback and change in clinical practices could not be documented; however, physicians in the area with the highest rate reviewed the indications for tonsillectomy and adopted a second opinion procedure for reviewing candidates for the surgery. The experience suggests that feedback of population-based data on incidence of procedures may be a valuable tool for the peer review process.


2018 ◽  
Vol 30 (2) ◽  
pp. 209-218 ◽  
Author(s):  
Paula CABEZAS Del FIERRO ◽  
Omar SABAJ MERUANE ◽  
Germán VARAS ESPINOZA ◽  
Valeria GONZÁLEZ HERRERA

Abstract The value of scientific knowledge is highly dependent on the quality of the process used to produce it, namely, the quality of the peer-review process. This process is a pivotal part of science as it works both to legitimize and improve the work of the scientific community. In this context, the present study investigated the relationship between review time, length, and feedback quality of review reports in the peer-review process of research articles. For this purpose, the review time of 313 referee reports from three Chilean international journals were recorded. Feedback quality was determined estimating the rate of direct requests by the total number of comments in each report. Number of words was used to describe the average length in the sample. Results showed that average time and length have little variation across review reports, irrespective of their quality. Low quality reports tended to take longer to reach the editor, so neither time nor length were related to feedback quality. This suggests that referees mostly describe, criticize, or praise the content of the article instead of making useful and direct comments to help authors improve their manuscripts.


2010 ◽  
Vol 88 (1) ◽  
pp. 41-48 ◽  
Author(s):  
Caroline A. Ewens ◽  
Patrik Kloppsteck ◽  
Andreas Förster ◽  
Xiaodong Zhang ◽  
Paul S. Freemont

p97, also known as VCP (valosin-containing protein), is a hexameric AAA+ ATPase that participates in a variety of cellular processes. It is believed that p97 mediates these processes through the binding of various adaptor proteins. Many factors govern adaptor binding and the regulatory mechanisms are not yet well understood. Sites of phosphorylation and acetylation on p97 have been identified and such post-translational modifications may be involved in regulating p97 function. Phosphorylation and, to a lesser extent, acetylation of p97 have been shown to modify its properties — for example, by modulating adaptor binding and directing subcellular localization. These modifications have been implicated in a number of p97-mediated processes, including misfolded protein degradation, membrane fusion, and transcription factor activation. This review describes the known phosphorylation and acetylation sites on p97 and discusses their possible structural and functional implications.


2010 ◽  
Vol 88 (1) ◽  
pp. 63-75 ◽  
Author(s):  
Tobias Haslberger ◽  
Bernd Bukau ◽  
Axel Mogk

The oligomeric AAA+ chaperones ClpB/Hsp104 mediate the reactivation of aggregated proteins, an activity that is crucial for the survival of cells during severe stress. Hsp104 is also essential for the propagation of yeast prions by severing prion fibres. Protein disaggregation depends on the cooperation of ClpB/Hsp104 with a cognate Hsp70 chaperone system. While Hsp70 chaperones are also involved in prion propagation, their precise role is much less well defined compared with its function in aggregate solubilization. Therefore, it remained unclear whether both ClpB/Hsp104 activities are based on common or different mechanisms. Novel data show that ClpB/Hsp104 uses a motor threading activity to remodel both protein aggregates and prion fibrils. Moreover, transfer of both types of substrates to the ClpB/Hsp104 processing pore site requires initial substrate interaction of Hsp70. Together these data emphasize the similarity of thermotolerance and prion propagation pathways and point to a shared mechanistic principle of Hsp70–ClpB/Hsp104-mediated solubilization of amorphous and ordered aggregates.


2014 ◽  
Vol 25 (21) ◽  
pp. 3270-3272
Author(s):  
William (B. R.) Brinkley

One of the earliest lessons students learn in biology is the process of mitosis and how cells divide to produce daughter cells. Although first described more than a century ago by early investigators such as E. B. Wilson, many aspects of mitosis and cell division remain the subject of considerable research today. My personal investigations and research contributions to the study of mitosis were made possible by recent developments in the field when I began my career, including access to novel mammalian cell culture models and electron and fluorescence microscopy. Building upon those innovations, my laboratory and other contemporary investigators first charted the ultrastructure and molecular organization of mitosis and chromosome movement and the assembly and function of the cytoskeleton. This field of research remains a significant challenge for future investigators in cell biology and medicine.


2009 ◽  
Vol 34 (3) ◽  
pp. 488-492 ◽  
Author(s):  
Terry E. Graham

While scientists have routinely measured muscle glycogen in many metabolic situations for over 4 decades, there is surprisingly little known regarding its regulation. In the past decade, considerable evidence has illustrated that the carbohydrate stores in muscle are not homogeneous, and it is very likely that metabolic pools exist or that each granule has independent regulation. The fundamental aspects appear to be associated with a complex set of proteins that associate with both the granule and each other in a dynamic fashion. Some of the proteins are enzymes and others play scaffolding roles. A number of the proteins can translocate, depending on the metabolic stimulus. These various processes appear to be the mechanisms that give the glycogen granule precise yet dynamic regulation. This may also allow the stores to serve as an important metabolic regulator of other metabolic events.


Sign in / Sign up

Export Citation Format

Share Document