THE ROLE OF RIBOFLAVIN IN MONOAMINE OXIDASE ACTIVITY

1963 ◽  
Vol 41 (1) ◽  
pp. 57-64 ◽  
Author(s):  
M. H. Wiseman-Distler ◽  
T. L. Sourkes

The role of riboflavin in the activity of monoamine oxidase (MAO) was investigated by omitting the vitamin from the diet of rats which were further treated with iproniazid, an irreversible inhibitor of the enzyme. The rate of recovery from the inhibition, presumably reflecting de novo synthesis of the enzyme, was estimated by measuring the excretion of the acidic metabolites formed after intraperitoneal administration of serotonin (5 HT) and dopamine. Consumption of the deficient diet did not impair the action of MAO on these amines. After injection of iproniazid, return to control levels of MAO activity was slower when measured by the oxidation of dopamine than of 5 HT; there was a small but significant effect of riboflavin deficiency upon the conversion of 5 HT to 5-hydroxyindoleacetic acid. This was probably due to enhanced inhibition of MAO observed in deficient rats, an effect that was also obtained when inhibitors other than iproniazid were used in vivo. Similarly, disappearance of 5 HT during incubation with a supernatant prepared from liver of deficient rats was also affected to a greater extent by these inhibitors than when the enzymatic system was prepared from control livers. This finding suggests that riboflavin deficiency renders MAO more susceptible to inhibition.

1963 ◽  
Vol 41 (1) ◽  
pp. 57-64 ◽  
Author(s):  
M. H. Wiseman-Distler ◽  
T. L. Sourkes

The role of riboflavin in the activity of monoamine oxidase (MAO) was investigated by omitting the vitamin from the diet of rats which were further treated with iproniazid, an irreversible inhibitor of the enzyme. The rate of recovery from the inhibition, presumably reflecting de novo synthesis of the enzyme, was estimated by measuring the excretion of the acidic metabolites formed after intraperitoneal administration of serotonin (5 HT) and dopamine. Consumption of the deficient diet did not impair the action of MAO on these amines. After injection of iproniazid, return to control levels of MAO activity was slower when measured by the oxidation of dopamine than of 5 HT; there was a small but significant effect of riboflavin deficiency upon the conversion of 5 HT to 5-hydroxyindoleacetic acid. This was probably due to enhanced inhibition of MAO observed in deficient rats, an effect that was also obtained when inhibitors other than iproniazid were used in vivo. Similarly, disappearance of 5 HT during incubation with a supernatant prepared from liver of deficient rats was also affected to a greater extent by these inhibitors than when the enzymatic system was prepared from control livers. This finding suggests that riboflavin deficiency renders MAO more susceptible to inhibition.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii98-ii98
Author(s):  
Anne Marie Barrette ◽  
Alexandros Bouras ◽  
German Nudelman ◽  
Zarmeen Mussa ◽  
Elena Zaslavsky ◽  
...  

Abstract Glioblastoma (GBM) remains an incurable disease, in large part due to its malignant infiltrative spread, and current clinical therapy fails to target the invasive nature of tumor cells in disease progression and recurrence. Here, we use the YAP-TEAD inhibitor Verteporfin to target a convergence point for regulating tumor invasion/metastasis and establish the robust anti-invasive therapeutic efficacy of this FDA-approved drug and its survival benefit across several preclinical glioma models. Using patient-derived GBM cells and orthotopic xenograft models (PDX), we show that Verteporfin treatment disrupts YAP/TAZ-TEAD activity and processes related to cell adhesion, migration and epithelial-mesenchymal transition. In-vitro, Verteporfin impairs tumor migration, invasion and motility dynamics. In-vivo, intraperitoneal administration of Verteporfin in mice with orthotopic PDX tumors shows consistent drug accumulation within the brain and decreased infiltrative tumor burden, across three independent experiments. Interestingly, PDX tumors with impaired invasion after Verteporfin treatment downregulate CDH2 and ITGB1 adhesion protein levels within the tumor microenvironment. Finally, Verteporfin treatment confers survival benefit in two independent PDX models: as monotherapy in de-novo GBM and in combination with standard-of-care chemoradiation in recurrent GBM. These findings indicate potential therapeutic value of this FDA-approved drug if repurposed for GBM patients.


2001 ◽  
Vol 21 (23) ◽  
pp. 8117-8128 ◽  
Author(s):  
Simona Grossi ◽  
Alessandro Bianchi ◽  
Pascal Damay ◽  
David Shore

ABSTRACT Rap1p, the major telomere repeat binding protein in yeast, has been implicated in both de novo telomere formation and telomere length regulation. To characterize the role of Rap1p in these processes in more detail, we studied the generation of telomeres in vivo from linear DNA substrates containing defined arrays of Rap1p binding sites. Consistent with previous work, our results indicate that synthetic Rap1p binding sites within the internal half of a telomeric array are recognized as an integral part of the telomere complex in an orientation-independent manner that is largely insensitive to the precise spacing between adjacent sites. By extending the lengths of these constructs, we found that several different Rap1p site arrays could never be found at the very distal end of a telomere, even when correctly oriented. Instead, these synthetic arrays were always followed by a short (≈100-bp) “cap” of genuine TG repeat sequence, indicating a remarkably strict sequence requirement for an end-specific function(s) of the telomere. Despite this fact, even misoriented Rap1p site arrays promote telomere formation when they are placed at the distal end of a telomere-healing substrate, provided that at least a single correctly oriented site is present within the array. Surprisingly, these heterogeneous arrays of Rap1p binding sites generate telomeres through a RAD52-dependent fusion resolution reaction that results in an inversion of the original array. Our results provide new insights into the nature of telomere end capping and reveal one way by which recombination can resolve a defect in this process.


Author(s):  
Marlaina R. Stocco ◽  
Ahmed A. El-Sherbeni ◽  
Bin Zhao ◽  
Maria Novalen ◽  
Rachel F. Tyndale

Abstract Rationale Cytochrome P450 2D (CYP2D) enzymes metabolize many addictive drugs, including methamphetamine. Variable CYP2D metabolism in the brain may alter CNS drug/metabolite concentrations, consequently affecting addiction liability and neuropsychiatric outcomes; components of these can be modeled by behavioral sensitization in rats. Methods To investigate the role of CYP2D in the brain in methamphetamine-induced behavioral sensitization, rats were pretreated centrally with a CYP2D irreversible inhibitor (or vehicle) 20 h prior to each of 7 daily methamphetamine (0.5 mg/kg subcutaneous) injections. In vivo brain microdialysis was used to assess brain drug and metabolite concentrations, and neurotransmitter release. Results CYP2D inhibitor (versus vehicle) pretreatment enhanced methamphetamine-induced stereotypy response sensitization. CYP2D inhibitor pretreatment increased brain methamphetamine concentrations and decreased the brain p-hydroxylation metabolic ratio. With microdialysis conducted on days 1 and 7, CYP2D inhibitor pretreatment exacerbated stereotypy sensitization and enhanced dopamine and serotonin release in the dorsal striatum. Day 1 brain methamphetamine and amphetamine concentrations correlated with dopamine and serotonin release, which in turn correlated with the stereotypy response slope across sessions (i.e., day 1 through day 7), used as a measure of sensitization. Conclusions CYP2D-mediated methamphetamine metabolism in the brain is sufficient to alter behavioral sensitization, brain drug concentrations, and striatal dopamine and serotonin release. Moreover, day 1 methamphetamine-induced neurotransmitter release may be an important predictor of subsequent behavioral sensitization. This suggests the novel contribution of CYP2D in the brain to methamphetamine-induced behavioral sensitization and suggests that the wide variation in human brain CYP2D6 may contribute to differential methamphetamine responses and chronic effects.


1993 ◽  
Vol 264 (2) ◽  
pp. C457-C463 ◽  
Author(s):  
I. Dorup ◽  
T. Clausen

In young rats fed a Mg(2+)-deficient diet for 3 wk, Mg2+ and K+ contents in soleus and extensor digitorum longus muscles were significantly reduced and closely correlated. In isolated soleus muscles, Mg2+ depletion induced an even more pronounced loss of K+, and Mg2+ and K+ contents were correlated over a wide range (r = 0.95, P < 0.001). Extracellular Mg2+ (0-1.2 mM) caused no change in total or ouabain-suppressible 86Rb influx. After long-term incubation in Ca(2+)-Mg(2+)-free buffer with EDTA and EGTA, cellular Mg2+ and K+ contents were reduced by 35 and 15%, respectively, without any reduction in ATP and total or ouabain-suppressible 86Rb influx. In Mg(2+)-depleted muscles 42K efflux was increased by up to 42%, and repletion with Mg2+ produced a graded decrease. We conclude that Mg2+ and K+ contents are closely correlated in muscles Mg2+ depleted in vivo or in vitro and that neither extracellular nor moderate intracellular Mg2+ depletion affects total or Na(+)-K+ pump-mediated K+ influx. The reduced K+ content may rather be related to increased K+ efflux from the muscles.


2020 ◽  
Vol 14 ◽  
Author(s):  
Santiago E. Charif ◽  
Luciana Luchelli ◽  
Antonella Vila ◽  
Matías Blaustein ◽  
Lionel M. Igaz

TDP-43 is a major component of cytoplasmic inclusions observed in neurodegenerative diseases like frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). To further understand the role of TDP-43 in mRNA/protein metabolism and proteostasis, we used a combined approach with cellular and animal models overexpressing a cytoplasmic form of human TDP-43 (TDP-43-ΔNLS), recapitulating ALS/FTD features. We applied in HEK293 cells a method for labeling de novo translation, surface sensing of translation (SUnSET), based on puromycin (PURO) incorporation. While control cells displayed robust puromycilation, TDP-43-ΔNLS transfected cells exhibited reduced ongoing protein synthesis. Next, by using a transgenic mouse overexpressing cytoplasmic TDP-43 in the forebrain (TDP-43-ΔNLS mice) we assessed whether cytoplasmic TDP-43 regulates global translation in vivo. Polysome profiling of brain cortices from transgenic mice showed a shift toward non-polysomal fractions as compared to wild-type littermates, indicating a decrease in global translation. Lastly, cellular level translational assessment by SUNSET was performed in TDP-43-ΔNLS mice brain slices. Control mice slices incubated with PURO exhibited robust cytoplasmic PURO signal in layer 5 neurons from motor cortex, and normal nuclear TDP-43 staining. Neurons in TDP-43-ΔNLS mice slices incubated with PURO exhibited high cytoplasmic expression of TDP-43 and reduced puromycilation respect to control mice. These in vitro and in vivo results indicate that cytoplasmic TDP-43 decreases global translation and potentially cause functional/cytotoxic effects as observed in ALS/FTD. Our study provide in vivo evidence (by two independent and complementary methods) for a role of mislocalized TDP-43 in the regulation of global mRNA translation, with implications for TDP-43 proteinopathies.


1984 ◽  
Vol 221 (3) ◽  
pp. 837-843 ◽  
Author(s):  
M J Carrington ◽  
T A Bird ◽  
C I Levene

Isonicotinic acid hydrazide (isoniazid) causes a large increase in the salt-solubility of collagen when injected into chick embryos; this change is accompanied by the inactivation of lysyl oxidase (EC 1.4.3.13), the enzyme responsible for initiating cross-link formation in collagen and elastin. In addition, isoniazid markedly decreases the liver content of pyridoxal phosphate. The depletion of pyridoxal phosphate takes approx. 6 h, whereas the inhibition of lysyl oxidase and the increase in collagen solubility occur more slowly. A reversal of these effects of isoniazid can be produced by the subsequent injection of a stoichiometric amount of pyridoxal, supporting the role of pyridoxal as a cofactor for lysyl oxidase. Treatment of chick embryos with beta-aminopropionitrile, an irreversible inhibitor of lysyl oxidase, causes an inhibition of the enzyme, which begins to recover within 24 h but which is not affected by the administration of pyridoxal; with isoniazid inhibition, however, lysyl oxidase activity does not show any sign of recovery by 48 h. It is proposed that isoniazid may cause the inhibition of lysyl oxidase by competing for its obligatory cofactor, pyridoxal phosphate. The potential clinical implications in the therapeutic control of fibrosis are briefly discussed.


Blood ◽  
2010 ◽  
Vol 116 (21) ◽  
pp. 95-95 ◽  
Author(s):  
Keisuke Ito ◽  
Paolo Sportoletti ◽  
John G Clohessy ◽  
Grisendi Silvia ◽  
Pier Paolo Pandolfi

Abstract Abstract 95 Myelodysplastic syndrome (MDS) is an incurable stem cell disorder characterized by ineffective hematopoiesis and an increased risk of leukemia transformation. Nucleophosmin (NPM) is directly implicated in primitive hematopoiesis, the pathogenesis of hematopoietic malignancies and more recently of MDS. However, little is known regarding the molecular role and function of NPM in MDS pathogenesis and in stem cell biology. Here we present data demonstrating that NPM plays a critical role in the maintenance of hematopoietic stem cells (HSCs) and the transformation of MDS into leukemia. NPM is located on chromosome 5q and is frequently lost in therapy-related and de novo MDS. We have previously shown that Npm1 acts as a haploinsufficient tumor suppressor in the hematopoietic compartment and Npm1+/− mice develop a hematologic syndrome with features of human MDS, including increased susceptibility to leukemogenesis. As HSCs have been demonstrated to be the target of the primary neoplastic event in MDS, a functional analysis of the HSC compartment is essential to understand the molecular mechanisms in MDS pathogenesis. However, the role of NPM in adult hematopoiesis remains largely unknown as Npm1-deficiency leads to embryonic lethality. To investigate NPM function in adult hematopoiesis, we have generated conditional knockout mice of Npm1, using the Cre-loxP system. Analysis of Npm1 conditional mutants crossed with Mx1-Cre transgenic mice reveals that Npm1 plays a crucial role in adult hematopoiesis and ablation of Npm1 in adult HSCs leads to aberrant cycling and followed by apoptosis. Analysis of cell cycle status revealed that HSCs are impaired in their ability to maintain quiescence after Npm1-deletion and are rapidly depleted in vivo as well as in vitro. Competitive reconstitution assay revealed that Npm1 acts cell-autonomously to maintain HSCs. Conditional inactivation of Npm1 leads to an MDS phenotype including a profoundly impaired ability to differentiate into cells of the erythroid lineage, megakaryocyte dyspoiesis and centrosome amplification. Furthermore, Npm1 loss evokes a p53-dependent response and Npm1-deleted HSCs undergo apoptosis in vivo and in vitro. Strikingly, transfer of the Npm1 mutation into a p53-null background rescued the apoptosis of Npm1-ablated HSCs and resulted in accelerated transformation to an aggressive and lethal form of acute myeloid leukemia. Our findings highlight the crucial role of NPM in stem cell biology and identify a new mechanism by which MDS can progress to leukemia. This has important therapeutic implications for de novo MDS as well as therapy-related MDS, which is known to rapidly evolve to leukemia with frequent loss or mutation of TRP53. Disclosures: No relevant conflicts of interest to declare.


1990 ◽  
Vol 268 (2) ◽  
pp. 409-414 ◽  
Author(s):  
F N Bolkenius ◽  
B Knödgen ◽  
N Seiler

5-Fluoromethylornithine (5FMOrn) is an enzyme-activated irreversible inhibitor or ornithine aminotransferase (L-ornithine:2-oxo-acid 5-aminotransferase, OAT). For purified rat liver OAT, Ki(app.) was found to be 30 microM. and tau 1/2 = 4 min. Of the four stereomers of 5FMOrn only one reacts with OAT. The formation of a chromophore with an absorption maximum at 458 nm after inactivation of OAT by 5FMOrn suggests the formation of an enamine intermediate, which is slowly hydrolysed to release an unsaturated ketone. L-Canaline [(S)-2-amino-4-amino-oxybutyric acid] is a well-known irreversible inhibitor of OAT. Not only the natural L-enantiomer but also the D-enantiomer reacts by oxime formation with pyridoxal 5′-phosphate in the active site of the enzyme, although considerably more slowly. This demonstrates that the stereochemistry at C-2 of ornithine is not absolutely stringent. In vitro, canaline reacted faster than 5FMOrn with OAT. In vivo, however, only incomplete OAT inhibition was observed with canaline. Whereas intraperitoneal administration of 10 mg of 5FMOrn/kg body wt. to mice was sufficient to inactivate OAT in brain and liver by 90% for 24 h, 500 mg of DL-canaline/kg body wt. only produced a transient inhibition of 65-70%. The accumulation of ornithine in these tissues was considerably slower and the maximum concentrations lower than were achieved with 5FMOrn. It appears that DL-canaline, in contrast with 5FMOrn, is not useful as a tool in studies of biological consequences of OAT inhibition.


Sign in / Sign up

Export Citation Format

Share Document