MEMBRANE SPECIFICITY OF LEUCONOSTOC MESENTEROIDES FOR THE STEREOISOMERIC FORMS OF GLYCINE AND VALINE DIPEPTIDES

1967 ◽  
Vol 45 (2) ◽  
pp. 213-220 ◽  
Author(s):  
Omar C. Yoder ◽  
Kathryn C. Beamer ◽  
Damon C. Shelton

Transport systems of Leuconostoc mesenteroides differ greatly in the stereochemical specificity exhibited for amino acids and dipeptides. Nongrowing cell suspensions of this organism accumulated D- and L-valine to approximately the same extent, whereas no measurable transport of valine from glycyl-D-valine occurred. In concurrent studies, however, a very high uptake of valine was found from glycyl-L-valine. Stereospecific synthesis of the various radioactive valine dipeptides permitted more extensive studies. No valine transport was found from any of the isomeric forms if D-valine was one of the amino acid moieties. Consistent with these observations, no hydrolysis of any dipeptide by intracellular dipeptidases could be detected when D-valine was a part of the peptide. This difference in stereochemical specificity supports the concept of separate transport sites for amino acids and related dipeptides.

1975 ◽  
Vol 53 (9) ◽  
pp. 975-988 ◽  
Author(s):  
Danny P. Singh ◽  
Hérb. B. LéJohn

Transport of amino acids in the water-mould Achlya is an energy-dependent process. Based on competition kinetics and studies involving the influence of pH and temperature on the initial transport rates, it was concluded that the 20 amino acids (L-isomers) commonly found in proteins were transported by more than one, possibly nine, uptake systems. This is similar to the pattern elucidated for some bacteria but unlike those uncovered for all fungi studied to date. The nine different transport systems elucidated are: (i) methionine, (ii) cysteine, (iii) proline, (iv) serine–threonine, (v) aspartic and glutamic acids, (vi) glutamine and asparagine, (vii) glycine and alanine, (viii) histidine, lysine, and arginine, and (ix) phenylalanine–tyrosine–tryptophan and leucine–isoleucine–valine as two overlapping groups. Transport of all of these amino acids was inhibited by azide, cyanide, and its derivatives and 2,4-dinitrophenol. These agents normally interfere with metabolism at the level of the electron transport chain and oxidative phosphorylation. Osmotic shock treatment of the cells released, into the shock fluid, a glycopeptide that binds calcium as well as tryptophan but no other amino acid. The shocked cells are incapable of concentrating amino acids, but remain viable and reacquire this capacity when the glycopeptide is resynthesized.Calcium played more than a secondary role in the transport of the amino acids. When bound to the membrane-localized glycopeptide, it permits concentrative transport to take place. However, excess calcium can inhibit transport which can be overcome by chelating with citrate. Calculations show that the concentration of free citrate is most important. At low citrate concentrations (less than 1 mM) in the absence of exogenously supplied calcium, enhancement of amino acid transport occurs. At high concentrations (greater than 5 mM), citrate inhibits but this effect can be reversed by titrating with calcium. Evidently, the glycopeptide acts as a calcium sink to regulate the concentration of calcium made available to the cell for its membrane activities.N6-(Δ2-isopentenyl) adenine (a plant growth 'hormone') and analogues mimic the inhibitory effect of citrate and bind to the glycopeptide as well. Replot data for citrate and N6-(Δ2-isopentyl) adenine inhibition indicate that both agents have no more than one binding constant. These results implicate calcium, glycopeptide, and energy-dependent transport of solutes in some, as yet undefinable, way.


1995 ◽  
Vol 268 (6) ◽  
pp. C1321-C1331 ◽  
Author(s):  
A. J. Moe

Normal fetal growth and development depend on a continuous supply of amino acids from the mother to the fetus. The placenta is responsible for the transfer of amino acids between the two circulations. The human placenta is hemomonochorial, meaning that the maternal and fetal circulations are separated by a single layer of polarized epithelium called the syncytiotrophoblast, which is in direct contact with maternal blood. Transport proteins located in the microvillous and basal membranes of the syncytiotrophoblast are the principal mechanism for transfer from maternal blood to fetal blood. Knowledge of the function and regulation of syncytiotrophoblast amino acid transporters is of great importance in understanding the mechanism of placental transport and potentially improving fetal and newborn outcomes. The development of methods for the isolation of microvillous and basal membrane vesicles from human placenta over the past two decades has contributed greatly to this understanding. Now a primary cultured trophoblast model is available to study amino acid transport and regulation as the cells differentiate. The types of amino acid transporters and their distribution between the syncytiotrophoblast microvillous and basal membranes are somewhat unique compared with other polarized epithelia. These differences may reflect the unusual circumstance of this epithelium that is exposed to blood on both sides. The current state of knowledge as to the types of transport systems present in syncytiotrophoblast, their regulation, and the effects of maternal consumption of drugs on transport are discussed.


2005 ◽  
Vol 288 (2) ◽  
pp. C290-C303 ◽  
Author(s):  
Tiziano Verri ◽  
Cinzia Dimitri ◽  
Sonia Treglia ◽  
Fabio Storelli ◽  
Stefania De Micheli ◽  
...  

Information regarding cationic amino acid transport systems in thyroid is limited to Northern blot detection of y+LAT1 mRNA in the mouse. This study investigated cationic amino acid transport in PC cell line clone 3 (PC Cl3 cells), a thyroid follicular cell line derived from a normal Fisher rat retaining many features of normal differentiated follicular thyroid cells. We provide evidence that in PC Cl3 cells plasmalemmal transport of cationic amino acids is Na+ independent and occurs, besides diffusion, with the contribution of high-affinity, carrier-mediated processes. Carrier-mediated transport is via y+, y+L, and b0,+ systems, as assessed by l-arginine uptake and kinetics, inhibition of l-arginine transport by N-ethylmaleimide and neutral amino acids, and l-cystine transport studies. y+L and y+ systems account for the highest transport rate (with y+L > y+) and b0,+ for a residual fraction of the transport. Uptake data correlate to expression of the genes encoding for CAT-1, CAT-2B, 4F2hc, y+LAT1, y+LAT2, rBAT, and b0,+AT, an expression profile that is also shown by the rat thyroid gland. In PC Cl3 cells cationic amino acid uptake is under TSH and/or cAMP control (with transport increasing with increasing TSH concentration), and upregulation of CAT-1, CAT-2B, 4F2hc/y+LAT1, and rBAT/b0,+AT occurs at the mRNA level under TSH stimulation. Our results provide the first description of an expression pattern of cationic amino acid transport systems in thyroid cells. Furthermore, we provide evidence that extracellular l-arginine is a crucial requirement for normal PC Cl3 cell growth and that long-term l-arginine deprivation negatively influences CAT-2B expression, as it correlates to reduction of CAT-2B mRNA levels.


1961 ◽  
Vol 39 (11) ◽  
pp. 1717-1735 ◽  
Author(s):  
P. G. Scholefield

The cumulative entry of amino acids into Ehrlich ascites carcinoma cells is due to the presence of active transport systems, each with its own specific range of substrates. Several amino acids and amino acid analogues may have an affinity for the same transport system and thus may inhibit transport of other amino acids by acting as competitive inhibitors or competitive substrates. Loss of methionine from ascites cells takes place by a diffusion process which obeys Fick's law. Leucine accumulation by ascites cells is small and is increased on addition of certain other amino acids. The increase is not due to inhibition of leucine oxidation as increase in the rate of production of radioactive carbon dioxide from labeled leucine also occurs. Kinetic aspects of these results are discussed.


1979 ◽  
Vol 25 (10) ◽  
pp. 1161-1168 ◽  
Author(s):  
Roselynn M. W. Stevenson

Uptake of amino acids by Bacteroides ruminicola was observed in cells grown in a complete defined medium, containing ammonia as the nitrogen source. A high rate of uptake occurred only in fresh medium, as an inhibitory substance, possibly acetate, apparently accumulated during growth. All amino acids except proline were taken up and incorporated into cold trichloroacetic acid precipitable material. Different patterns of incorporation and different responses to 2,4-dinitrophenol and potassium ferricyanide indicated multiple uptake systems were involved. Kinetic inhibition patterns suggested six distinct systems were present for amino acid uptake, with specificities related to the chemical structures of the amino acids. Thus, the failure of free amino acids to act as sole nitrogen sources for growth of B. ruminicola is not due to the absence of transport systems for these compounds.


1990 ◽  
Vol 97 (3) ◽  
pp. 479-485
Author(s):  
J.R. Jara ◽  
J.H. Martinez-Liarte ◽  
F. Solano ◽  
R. Penafiel

The uptake of L-Tyr by B16/F10 malignant melanocytes in culture has been studied. These melanoma cells can either be depleted of amino acids by 1 h preincubation in Hanks' isotonic medium or preloaded with a specific amino acid by 1 h preincubation in the same solution containing 2 mM of the amino acid to be preloaded. By means of these pretreatments, it is shown that the rate of L-Tyr uptake is greatly dependent on the content of other amino acids inside the cells. The L-Tyr uptake is higher in cells preloaded with amino acids transported by the L and ASC systems than in cells depleted of amino acids or preloaded with amino acids transported by the A system. It is concluded that L-Tyr is mainly taken up by an exchange mechanism with other amino acids mediated by the L1 system, although the ASC system can also participate in the process. In agreement with that, the homo-exchange performed by cells preloaded with unlabelled L-Tyr is more efficient than any other hetero-exchange, although L-Dopa, the product of tyrosine hydroxylation in melanin synthesis, is almost as efficient as L-Tyr. Apart from aromatic amino acids, melanoma cells preloaded with L-Met and L-His also yield a high initial rate of L-Tyr uptake. The results herein suggest that melanoma cells do not have transport systems specific for L-Tyr, even if this amino acid is needed to carry out the differential pathway of this type of cells, melanosynthesis.


1981 ◽  
Vol 241 (3) ◽  
pp. C106-C112 ◽  
Author(s):  
B. M. Eaton ◽  
D. L. Yudilevich

Unidirectional uptake of eighteen amino acids into the syncytiotrophoblast was measured from both the maternal and fetal circulations of isolated dually perfused guinea pig placentas using a single-circulation, paired-tracer dilution technique. A bolus containing a tritiated amino acid and L-[14C]glucose (extracellular marker) was injected intra-arterially into one circulation, and both venous outflows were sequentially sampled. The maximal cellular uptake (Umax) on the injection side was determined from (1-[3H]/[14C]) values and used to calculate the unidirectional influx. Umax values for neutral and basic amino acids ranged between 15 and 58% and were similar on both sides of the trophoblast. Uptake of the acidic amino acids and taurine was minimal. Amino acid influx from either circulation was followed by rapid tracer backflux and transplacental transfer. Tracer efflux was asymmetric and preferentially directed towards the fetal side. It is suggested that amino acid transport systems are present on both surfaces of the placenta and that net transfer from mother to fetus is the result of asymmetric efflux from the trophoblast.


1956 ◽  
Vol 104 (2) ◽  
pp. 183-191 ◽  
Author(s):  
Kenneth E. Lentz ◽  
Leonard T. Skeggs ◽  
Kenneth R. Woods ◽  
Joseph R. Kahn ◽  
Norman P. Shumway

Preparations of hypertensin II, obtained from the treatment of hypertensin I by the action of the hypertensin converting enzyme of plasma and purified by countercurrent distribution, were quantitatively analyzed for their amino acid content. Chromatography on ion exchange columns showed the presence of equimolar amounts of aspartic acid, proline, valine, isoleucine, tyrosine, phenylalanine, histidine, and arginine. Hypertensin I was found to contain one mole of leucine and one mole of histidine in addition to the amino acids of hypertensin II. These two amino acids were isolated from the conversion products of hypertensin I and identified as the peptide histidylleucine. Carboxypeptidase digestion of hypertensin I showed the carboxyl terminal sequence of amino acids to be residue-phenylalanyl-histidylleucine. Similar studies of hypertensin II demonstrated residue-phenylalanine. It was concluded that the conversion of hypertensin I by the plasma hypertensin converting enzyme involved hydrolysis of the phenylalanyl-histidine bond to form hypertensin II and histidylleucine. The further removal by carboxypeptidase of phenylalanine from hypertensin II destroyed all of the vasoconstrictor activity.


Sign in / Sign up

Export Citation Format

Share Document