Studies on phosphoglyceromutase from chicken breast muscle: chemical modification of lysyl residues

1977 ◽  
Vol 55 (8) ◽  
pp. 856-864 ◽  
Author(s):  
T. J. Carne ◽  
T. G. Flynn

To examine the role of lysyl residues in the activity of the enzyme, phosphoglyceromutase (PGM) from chicken breast muscle was chemically modified with trinitrobenzenesulfonate (TNBS) and pyridoxal 5′-phosphate. Trinitrophenylation resulted in modification of about nine lysines per mole of PGM with almost complete activity loss. Substrate (3-PGA) offered some protection to TNBS inactivation but cofactor (2,3-DPGA) did not. Reduction of the Schiff s base complex between pyridoxal 5′-phosphate and PGM gave irreversible inactivation of the enzyme. Inactivation was due to incorporation of 1 mol of pyridoxal 5′-phosphate per mole of PGM dimer through the ε-amino group of a lysyl residue. The effect of pyridoxal 5′-phosphate was specific for intact native enzyme and reaction with only one lysine per dimer was not due to induced conformational changes nor to dissociation of the reacted enzyme. 3-PGA prevented much of the reaction with pyridoxal 5′-phosphate with preservation of 70% of the activity and was a competitive inhibitor of the active site directed reagent. Cofactor (2,3-DPGA) acting noncompetitively, reduced the rate at which inactivation occurred with pyridoxal 5′-phosphate. Incorporation of 2,3-[32P]DPGA into PGM irreversibly inactivated with pyridoxal 5′-phosphate and NaBH4 was incomplete indicating hindrance to phosphorylation in the modified enzyme.The results indicate that a lysyl residue is located at or near the active site of PGM and that it is probably involved in the binding of 3-PGA.

2001 ◽  
Vol 183 (14) ◽  
pp. 4244-4250 ◽  
Author(s):  
Prabha P. Iyer ◽  
James G. Ferry

ABSTRACT Phosphotransacetylase (EC 2.3.1.8 ) catalyzes the reversible transfer of the acetyl group from acetyl phosphate to coenzyme A (CoA): CH3COOPO3 2− + CoASH ⇆ CH3COSCoA + HPO4 2−. The role of arginine residues was investigated for the phosphotransacetylase from Methanosarcina thermophila. Kinetic analysis of a suite of variants indicated that Arg 87 and Arg 133 interact with the substrate CoA. Arg 87 variants were reduced in the ability to discriminate between CoA and the CoA analog 3′-dephospho-CoA, indicating that Arg 87 forms a salt bridge with the 3′-phosphate of CoA. Arg 133 is postulated to interact with the 5′-phosphate of CoA. Large decreases in k cat andk cat/Km for all of the Arg 87 and Arg 133 variants indicated that these residues are also important, although not essential, for catalysis. Large decreases ink cat andk cat/Km were also observed for the variants in which lysine replaced Arg 87 and Arg 133, suggesting that the bidentate interaction of these residues with CoA or their greater bulk is important for optimal activity. Desulfo-CoA is a strong competitive inhibitor of the enzyme, suggesting that the sulfhydryl group of CoA is important for the optimization of CoA-binding energy but not for tight substrate binding. Chemical modification of the wild-type enzyme by 2,3-butanedione and substrate protection by CoA indicated that at least one reactive arginine is in the active site and is important for activity. The inhibition pattern of the R87Q variant indicated that Arg 87 is modified, which contributes to the inactivation; however, at least one additional active-site arginine is modified leading to enzyme inactivation, albeit at a lower rate.


1998 ◽  
Vol 333 (3) ◽  
pp. 811-816 ◽  
Author(s):  
Antonio PÁRRAGA ◽  
Isabel GARCÍA-SÁEZ ◽  
Sinead B. WALSH ◽  
Timothy J. MANTLE ◽  
Miquel COLL

The structure of mouse liver glutathione S-transferase P1-1 complexed with its substrate glutathione (GSH) has been determined by X-ray diffraction analysis. No conformational changes in the glutathione moiety or in the protein, other than small adjustments of some side chains, are observed when compared with glutathione adduct complexes. Our structure confirms that the role of Tyr-7 is to stabilize the thiolate by hydrogen bonding and to position it in the right orientation. A comparison of the enzyme–GSH structure reported here with previously described structures reveals rearrangements in a well-defined network of water molecules in the active site. One of these water molecules (W0), identified in the unliganded enzyme (carboxymethylated at Cys-47), is displaced by the binding of GSH, and a further water molecule (W4) is displaced following the binding of the electrophilic substrate and the formation of the glutathione conjugate. The possibility that one of these water molecules participates in the proton abstraction from the glutathione thiol is discussed.


1993 ◽  
Vol 291 (1) ◽  
pp. 103-107 ◽  
Author(s):  
H M Zhou ◽  
X H Zhang ◽  
Y Yin ◽  
C L Tsou

It has been previously reported that, during denaturation of creatine kinase by guanidinium chloride (GdmCl) or urea [Tsou (1986), Trends Biochem. Sci. 11, 427-429], inactivation occurs before noticeable conformational change can be detected, and it is suggested that the conformation at the active site is more easily perturbed and hence more flexible than the molecule as a whole. In this study, the thiol and amino groups at or near the active site of creatine kinase are labelled with o-phthalaldehyde to form a fluorescent probe. Both the emission intensity and anisotropy decrease during denaturation indicating exposure of this probe and increased mobility of the active site. The above conformational changes take place together with enzyme inactivation at lower GdmCl concentrations than required to bring about intrinsic fluorescence changes of the enzyme. At the same GdmCl concentration, the rate of exposure of the probe is comparable with that of inactivation and is several orders of magnitude faster than that for the unfolding of the molecule as a whole.


2011 ◽  
Vol 441 (1) ◽  
pp. 113-118 ◽  
Author(s):  
Xi Wang ◽  
Likun Wang ◽  
Xi'e Wang ◽  
Fei Sun ◽  
Chih-chen Wang

Prx4 (peroxiredoxin 4) is the only peroxiredoxin located in the ER (endoplasmic reticulum) and a proposed scavenger for H2O2. In the present study, we solved crystal structures of human Prx4 in three different redox forms and characterized the reaction features of Prx4 with H2O2. Prx4 exhibits a toroid-shaped decamer constructed of five catalytic dimers. Structural analysis revealed conformational changes around helix α2 and the C-terminal reigon with a YF (Tyr-Phe) motif from the partner subunit, which are required for interchain disulfide formation between Cys87 and Cys208, a critical step of the catalysis. The structural explanation for the restricting role of the YF motif on the active site dynamics is provided in detail. Prx4 has a high reactivity with H2O2, but is susceptible to overoxidation and consequent inactivation by H2O2. Either deletion of the YF motif or dissociation into dimers decreased the susceptibility of Prx4 to overoxidation by increasing the flexibility of Cys87.


1974 ◽  
Vol 249 (8) ◽  
pp. 2599-2604 ◽  
Author(s):  
Thomas L. James ◽  
Mildred Cohn

2019 ◽  
Author(s):  
Chandrabose Selvaraj ◽  
Gurudeeban Selvaraj ◽  
Satyavani Kaliamurthi ◽  
Dong-Qing Wei ◽  
Sanjeev Kumar Singh

AbstractThe present study clearly explains the dependency of inhibitory activities in SrtA inhibitors is closely related to protein conformational changes of SrtA from Bacillus anthracis B. anthracisSortase A (SrtA) protein anchors proteins by recognizing a cell wall sorting signal containing the amino acid sequence LPXTG In order to analyze conformational changes and the role of SrtA enzyme, especially the loop motions which situated proximal to the active site molecular dynamic simulation was carried out for 100ns. Particular loop is examined for its various conformations from the MD trajectories and the open/close lid conformations are considered for the enzyme activity validations. Experimentally verified SrtA inhibitors activity was analyzed through 3D-QSAR and Molecular docking approaches. Results indicate that, biological activity of SrtA inhibitors is closely related to the closed lid conformation of SrtA from Bacillus anthracis. This work may lead to a better understanding of the mechanism of action and aid to design a novel and more potent SrtA inhibitors.


Sign in / Sign up

Export Citation Format

Share Document