Regulation of carbonic anhydrase III by thyroid hormone: opposite modulation in slow- and fast-twitch skeletal muscle

1987 ◽  
Vol 65 (9) ◽  
pp. 790-797 ◽  
Author(s):  
Pierre Frémont ◽  
Claude Lazure ◽  
Roland R. Tremblay ◽  
Michel Chrétien ◽  
Peter A. Rogers

This laboratory previously reported that a major 30 kilodalton (kDa) protein of the soluble cytoplasmic fraction of the rat slow-twitch soleus muscle is modulated by thyroid hormone. This protein has been purified and a portion of the primary structure has been determined. The sequence analysis suggested that the 30-kDa protein is carbonic anhydrase III (CA III; EC 4.2.1.1). The reaction of the protein with a CA III specific antibody and the similar modulation of CA III by thyroid hormone also support this conclusion. Immunochemical quantification of CA III and measurement of CA activity were performed in skeletal muscles of defined fiber-type composition from rats that were rendered hyperthyroid by treatment with 3,3′,5-triiodo-L-thyronine. These experiments revealed that CA activity and CA III content are deinduced in the soleus muscle (primarily type I fibers) and induced in the superficial vastus lateralis muscle (primarily type IIb), whereas no changes were detected in the tibialis anterior muscle (primary type IIa). These results show that the modulation of CA III by thyroid hormone in rat skeletal muscle is not limited to the slow-twitch soleus muscle and that the amplitude and direction of this modulation are directly related to the initial fiber-type composition of the skeletal muscle.

2012 ◽  
Vol 22 (4) ◽  
pp. 292-303 ◽  
Author(s):  
Ildus I. Ahmetov ◽  
Olga L. Vinogradova ◽  
Alun G. Williams

The ability to perform aerobic or anaerobic exercise varies widely among individuals, partially depending on their muscle-fiber composition. Variability in the proportion of skeletal-muscle fiber types may also explain marked differences in aspects of certain chronic disease states including obesity, insulin resistance, and hypertension. In untrained individuals, the proportion of slow-twitch (Type I) fibers in the vastus lateralis muscle is typically around 50% (range 5–90%), and it is unusual for them to undergo conversion to fast-twitch fibers. It has been suggested that the genetic component for the observed variability in the proportion of Type I fibers in human muscles is on the order of 40–50%, indicating that muscle fiber-type composition is determined by both genotype and environment. This article briefly reviews current progress in the understanding of genetic determinism of fiber-type proportion in human skeletal muscle. Several polymorphisms of genes involved in the calcineurin–NFAT pathway, mitochondrial biogenesis, glucose and lipid metabolism, cytoskeletal function, hypoxia and angiogenesis, and circulatory homeostasis have been associated with fiber-type composition. As muscle is a major contributor to metabolism and physical strength and can readily adapt, it is not surprising that many of these gene variants have been associated with physical performance and athlete status, as well as metabolic and cardiovascular diseases. Genetic variants associated with fiber-type proportions have important implications for our understanding of muscle function in both health and disease.


1993 ◽  
Vol 75 (1) ◽  
pp. 264-267 ◽  
Author(s):  
T. J. Walters ◽  
S. H. Constable

We examined the effect of long-term intermittent cold exposure on the fiber type composition of the predominantly type I soleus and the predominantly type IIb extensor digitorum longus (EDL) muscles of rats. Cold exposure was accomplished by submerging the rats in shoulder-deep water, maintained at 20 +/- 0.5 degrees C, for 1 h/day, 5 days/wk, for < or = 19 wk. The efficacy of the treatment was tested by subjecting both groups to 20 degrees C water for 45 min while rectal temperature (Tre) and O2 consumption (VO2) were measured. The cold-exposed group displayed a 22% smaller reduction in Tre (P < 0.05) at the end of the exposure and 23% greater VO2 (P < 0.05) during the same period. Fiber type composition was determined using routine histochemical methods for myosin-adenosinetriphosphatase. In the soleus muscle of the cold-exposed rats, the number of type IIa fibers increased 156% (P < 0.05) and the number of type I fibers decreased 24% (P < 0.05). Cold exposure had no significant influence on the fiber type composition of the EDL muscle. Cold exposure resulted in an increase in citrate synthase activity of 20 and 22% in the soleus and EDL muscles, respectively (P < 0.05). The present study demonstrates that intermittent cold exposure induces a type I-to-type IIa transformation in the soleus muscle while having no influence on the EDL muscle.


1999 ◽  
Vol 276 (2) ◽  
pp. R559-R565 ◽  
Author(s):  
Claude H. Côté ◽  
Fabrisia Ambrosio ◽  
Guylaine Perreault

Carbonic anhydrase (CA) III is very abundant in type I skeletal muscle, but its function is still debated. Our aims were to examine CA III expression during growth and determine whether the effects of CA inhibition previously observed in adult muscles could be seen in younger rats in which CA III levels are lower. CA III content and activity were measured in soleus muscles from 10- to 100-day-old rats, and the influence of CA inhibitor on fatigue and hexosemonophosphate content was quantified in vitro. CA III activity and content increased fivefold between 10 and 100 days of age. Data analysis revealed that the influence of CA inhibitor on fatigue was to some extent positively and linearly related to the level of CA III activity. Hexosemonophosphate accumulation with CA inhibition also became more significant with age. In conclusion, CA III level in soleus muscle does not stabilize before 3 mo after birth; data also confirm that the effects of CA inhibitors are due to inhibition of the CA III isoform.


1990 ◽  
Vol 258 (4) ◽  
pp. E635-E642 ◽  
Author(s):  
M. J. Pagliassotti ◽  
C. M. Donovan

Net lactate uptake and subsequent pathways for removal were studied in three rabbit skeletal muscle preparations of distinct fiber type composition, i.e., glycolytic (99.1 +/- 0.2% type IIb fibers), oxidative (97.5 +/- 0.6% type I fibers), and mixed (type I, IIa, and IIb fibers). Single-pass perfusions were carried out for 3 h in the presence of glucose, lactate, and [U-14C]lactate. Lactate levels, initially set at either 1 mM (n = 4/prep) or 2 mM (n = 4/prep), were elevated twice during the perfusion at 60 and 120 min. Net lactate uptake (mumol.100 g-1.min-1) was first observed in the oxidative preparation, 1.4 +/- 0.2, at an arterial lactate concentration of approximately 2.5 mM, whereas net lactate uptake in the glycolytic, 0.7 +/- 0.2, and mixed preparations, 7.0 +/- 0.5, was first observed at 4 mM. Net lactate balance, [14C]lactate removal, and 14CO2 release demonstrated strong linear correlations (r = 0.94-0.98) with arterial lactate concentration. To quantify the fate of [14C]lactate, preparations were perfused at a single elevated lactate concentration (approximately 8 mM) for 2 h. Oxidation was the primary means of disposal in the oxidative and mixed preparations, whereas glyconeogenesis dominated removal in the glycolytic preparation. The arterial lactate concentration at which a given muscle switches from net production to net removal, the rate of removal, and subsequent pathway(s) for disposal are a function of that muscle's fiber type composition.


1995 ◽  
Vol 268 (4) ◽  
pp. C869-C876 ◽  
Author(s):  
K. Vandenborne ◽  
G. Walter ◽  
L. Ploutz-Snyder ◽  
R. Staron ◽  
A. Fry ◽  
...  

We investigated the relationship between energy-rich phosphate content and muscle fiber-type composition in human skeletal muscle using a combination of 31P-nuclear magnetic resonance spectroscopy (NMR), histochemical, and biochemical analyses of muscle biopsies. Localized 31P spectra were collected simultaneously from the predominantly slow-twitch soleus muscle and the mixed (fast-twitch and slow-twitch) medial and lateral gastrocnemius muscles, using B1-insensitive Hadamard Spectroscopic Imaging. Biopsy samples were taken from the soleus and lateral gastrocnemius muscles before NMR investigation and analyzed for fiber type composition and succinic dehydrogenase (SDH) activity. Fiber-type composition was determined based both on myofibrillar actomyosin ATPase activity combined with cross-sectional area and on myosin heavy-chain composition. Localized spectroscopy demonstrated a significantly (P < 0.001) higher P(i)/phosphocreatine ratio in the soleus muscle (0.15 +/- 0.01) compared with the medial (0.12 +/- 0.01) and lateral (0.10 +/- 0.0) gastrocnemius. However, in vitro analysis of muscle biopsies showed only a moderate relationship between the basal phosphate content and myofibrillar actomyosin ATPase-based fiber-type composition and SDH activity, respectively.


2009 ◽  
Vol 296 (3) ◽  
pp. C525-C534 ◽  
Author(s):  
Alex Hennebry ◽  
Carole Berry ◽  
Victoria Siriett ◽  
Paul O'Callaghan ◽  
Linda Chau ◽  
...  

Myostatin (Mstn) is a secreted growth factor belonging to the tranforming growth factor (TGF)-β superfamily. Inactivation of murine Mstn by gene targeting, or natural mutation of bovine or human Mstn, induces the double muscling (DM) phenotype. In DM cattle, Mstn deficiency increases fast glycolytic (type IIB) fiber formation in the biceps femoris (BF) muscle. Using Mstn null (−/−) mice, we suggest a possible mechanism behind Mstn-mediated fiber-type diversity. Histological analysis revealed increased type IIB fibers with a concomitant decrease in type IIA and type I fibers in the Mstn−/−tibialis anterior and BF muscle. Functional electrical stimulation of Mstn−/−BF revealed increased fatigue susceptibility, supporting increased type IIB fiber content. Given the role of myocyte enhancer factor 2 (MEF2) in oxidative type I fiber formation, MEF2 levels in Mstn−/−tissue were quantified. Results revealed reduced MEF2C protein in Mstn−/−muscle and myoblast nuclear extracts. Reduced MEF2-DNA complex was also observed in electrophoretic mobility-shift assay using Mstn−/−nuclear extracts. Furthermore, reduced expression of MEF2 downstream target genes MLC1F and calcineurin were found in Mstn−/−muscle. Conversely, Mstn addition was sufficient to directly upregulate MLC promoter-enhancer activity in cultured myoblasts. Since high MyoD levels are seen in fast fibers, we analyzed MyoD levels in the muscle. In contrast to MEF2C, MyoD levels were increased in Mstn−/−muscle. Together, these results suggest that while Mstn positively regulates MEF2C levels, it negatively regulates MyoD expression in muscle. We propose that Mstn could regulate fiber-type composition by regulating the expression of MEF2C and MyoD during myogenesis.


2018 ◽  
Vol 125 (2) ◽  
pp. 470-478 ◽  
Author(s):  
Martin Thomassen ◽  
Morten Hostrup ◽  
Robyn M. Murphy ◽  
Brett A. Cromer ◽  
Casper Skovgaard ◽  
...  

Cl− channel protein 1 (ClC-1) may be important for excitability and contractility in skeletal muscle, but ClC-1 abundance has not been examined in human muscle. The aim of the present study was to examine ClC-1 abundance in human skeletal muscle, including fiber type specific differences and the effect of exercise training. A commercially available antibody was tested with positive and negative control tissue, and it recognized specifically ClC-1 in the range from 100 to 150 kDa. Abundance of ClC-1 was 38% higher ( P < 0.01) in fast twitch Type IIa muscle fibers than in slow twitch Type I. Muscle ClC-1 abundance did not change with 4 wk of training consisting of 30 min cycling at 85% of maximal heart rate (HRmax) and 3 × 30-s all out sprints or during a 7-wk training period with 10–12 × 30 s uphill cycling and 4–5 × ~4 min cycling at 90%–95% of HRmax. ClC-1 abundance correlated negatively ( P < 0.01) with maximal oxygen consumption ( r = –0.552) and incremental exercise performance ( r = –0.546). In addition, trained cyclists had lower ( P < 0.01) ClC-1 abundance than lesser trained individuals. The present observations indicate that a low abundance of muscle ClC-1 may be beneficial for exercise performance, but the role of abundance and regulation of ClC-1 in skeletal muscle of humans with respect to exercise performance and trainability need to be elucidated. NEW & NOTEWORTHY Abundance of the Cl− channel protein 1 (ClC-1) chloride channel may be important for excitability and contractility in human skeletal muscle and may therefore have implications for fatigue development. In this study, we confirmed ClC-1 specificity for a commercially available antibody, and this study is first to our knowledge to determine ClC-1 protein abundance in human muscle by Western blotting. We observed that abundance of ClC-1 was higher in fast compared with slow twitch fibers and lower in trained individuals than in recreationally active.


1999 ◽  
Vol 277 (2) ◽  
pp. R601-R606 ◽  
Author(s):  
Christian J. Carlson ◽  
Frank W. Booth ◽  
Scott E. Gordon

Transgenic mice lacking a functional myostatin (MSTN) gene demonstrate greater skeletal muscle mass resulting from muscle fiber hypertrophy and hyperplasia (McPherron, A. C., A. M. Lawler, and S.-J. Lee. Nature 387: 83–90, 1997). Therefore, we hypothesized that, in normal mice, MSTN may act as a negative regulator of muscle mass. Specifically, we hypothesized that the predominately slow (type I) soleus muscle, which demonstrates greater atrophy than the fast (type II) gastrocnemius-plantaris complex (Gast/PLT), would show more elevation in MSTN mRNA abundance during hindlimb unloading (HU). Surprisingly, MSTN mRNA was not detectable in weight-bearing or HU soleus muscle, which atrophied 42% by the 7th day of HU in female ICR mice. In contrast, MSTN mRNA was present in weight-bearing Gast/PLT muscle and was significantly elevated (67%) at 1 day but not at 3 or 7 days of HU. However, the Gast/PLT muscle had only atrophied 17% by the 7th day of HU. Because the soleus is composed only of type I and IIa fibers, whereas the Gast/PLT expresses type IId/x and IIb in addition to type I and IIa, it was necessary to perform a more careful analysis of the relationship between MSTN mRNA levels and myosin heavy-chain (MHC) isoform expression (as a marker of fiber type). A significant correlation ( r = 0.725, P < 0.0005) was noted between the percentage of MHC isoform IIb expression and MSTN mRNA abundance in several muscles of the mouse hindlimb. These results indicate that MSTN expression is not strongly associated with muscle atrophy induced by HU; however, it is strongly associated with MHC isoform IIb expression in normal muscle.


Sign in / Sign up

Export Citation Format

Share Document