An NH2-terminal deleted plasma membrane H+-ATPase is a dominant negative mutant and is sequestered in endoplasmic reticulum derived structures

2000 ◽  
Vol 78 (1) ◽  
pp. 51-58 ◽  
Author(s):  
Claudio Akio Masuda ◽  
Mónica Montero-Lomelí

The NH2-terminus of the plasma membrane H+-ATPase is one of the least conserved segments of this protein among fungi. We constructed and expressed a mutant H+-ATPase from Saccharomyces cerevisiae deleted at an internal peptide within the cytoplasmic NH2-terminus (D44-F116). When the enzyme was subjected to limited trypsinolysis it was digested more rapidly than wild type H+-ATPase. Membrane fractionation experiments and immunofluorescence microscopy, using antibodies against H+-ATPase showed that the mutant ATPase is retained in the endoplasmic reticulum. The pattern observed in the immunofluorescence microscopy resembled structures similar to Russell bodies (modifications of the endoplasmic reticulum membranes) recently described in yeast. When the wild type H+-ATPase was co-expressed with the mutant, wild type H+-ATPase was also retained in the endoplasmic reticulum. Co-expression of both ATPases in a wild type yeast strain was lethal, demonstrating that this is a dominant negative mutant.

2001 ◽  
Vol 358 (2) ◽  
pp. 517-522 ◽  
Author(s):  
Ivonne LISINSKI ◽  
Annette SCHÜRMANN ◽  
Hans-Georg JOOST ◽  
Samuel W. CUSHMAN ◽  
Hadi AL-HASANI

The subcellular targeting of the two recently cloned novel mammalian glucose transporters, GLUT6 {previously referred to as GLUT9 [Doege, Bocianski, Joost and Schürmann (2000) Biochem. J. 350, 771–776]} and GLUT8, was analysed by expression of haemagglutinin (HA)-epitope-tagged GLUTs in transiently transfected primary rat adipose cells. Similar to HA-GLUT4, both transporters, HA-GLUT6 and HA-GLUT8, were retained in intracellular compartments in non-stimulated cells. In contrast, mutation of the N-terminal dileucine motifs in both constructs led to constitutive expression of the proteins on the plasma membrane. Likewise, when endocytosis was blocked by co-expression of a dominant-negative mutant of the dynamin GTPase, wild-type HA-GLUT6 and HA-GLUT8 accumulated on the cell surface. However, in contrast with HA-GLUT4, no translocation of HA-GLUT6 and HA-GLUT8 to the plasma membrane was observed when the cells were stimulated with insulin, phorbol ester or hyperosmolarity. Thus GLUT6 and GLUT8 appear to recycle in a dynamin-dependent manner between internal membranes and the plasma membrane in rat adipose cells, but are unresponsive to stimuli that induce translocation of GLUT4.


Development ◽  
1994 ◽  
Vol 120 (4) ◽  
pp. 901-909 ◽  
Author(s):  
E. Levine ◽  
C.H. Lee ◽  
C. Kintner ◽  
B.M. Gumbiner

E-cadherin function was disrupted in vivo in developing Xenopus laevis embryos through the expression of a mutant E-cadherin protein lacking its cytoplasmic tail. This truncated form of E-cadherin was designed to act as a dominant negative mutant by competing with the extracellular interactions of wild-type endogenous E-cadherin. Expression of truncated E-cadherin in the early embryo causes lesions to develop in the ectoderm during gastrulation. In contrast, expression of a similarly truncated N-cadherin protein failed to cause the lesions. The ectodermal defect caused by the truncated E-cadherin is rescued by overexpression of wild-type E-cadherin, by co-injection of full-length E-cadherin RNA along with the RNA for the truncated form. Overexpression of full-length C-cadherin, however, is unable to compensate for the disruption of E-cadherin function and can actually cause similar ectodermal lesions when injected alone, suggesting that there is a specific requirement for E-cadherin. Therefore, E-cadherin seems to be specifically required for maintaining the integrity of the ectoderm during epiboly in the gastrulating Xenopus embryo. Differential cadherin expression reflects, therefore, the requirement for distinct adhesive properties during different morphogenetic cell behaviors.


2008 ◽  
Vol 19 (11) ◽  
pp. 4888-4899 ◽  
Author(s):  
Laura A. Schroder ◽  
Michael V. Ortiz ◽  
William A. Dunn

Several Sec proteins including a guanosine diphosphate/guanosine triphosphate exchange factor for Sar1p have been implicated in autophagy. In this study, we investigated the role of Sar1p in pexophagy by expressing dominant-negative mutant forms of Sar1p in Pichia pastoris. When expressing sar1pT34N or sar1pH79G, starvation-induced autophagy, glucose-induced micropexophagy, and ethanol-induced macropexophagy are dramatically suppressed. These Sar1p mutants did not affect the initiation or expansion of the sequestering membranes nor the trafficking of Atg11p and Atg9p to these membranes during micropexophagy. However, the lipidation of Atg8p and assembly of the micropexophagic membrane apparatus, which are essential to complete the incorporation of the peroxisomes into the degradative vacuole, were inhibited when either Sar1p mutant protein was expressed. During macropexophagy, the expression of sar1pT34N inhibited the formation of the pexophagosome, whereas sar1pH79G suppressed the delivery of the peroxisome from the pexophagosome to the vacuole. The pexophagosome contained Atg8p in wild-type cells, but in cells expressing sar1pH79G these organelles contain both Atg8p and endoplasmic reticulum components as visualized by DsRFP-HDEL. Our results demonstrate key roles for Sar1p in both micro- and macropexophagy.


2004 ◽  
Vol 15 (8) ◽  
pp. 3758-3770 ◽  
Author(s):  
Roberto Weigert ◽  
Albert Chi Yeung ◽  
Jean Li ◽  
Julie G. Donaldson

Plasma membrane proteins that are internalized independently of clathrin, such as major histocompatibility complex class I (MHCI), are internalized in vesicles that fuse with the early endosomes containing clathrin-derived cargo. From there, MHCI is either transported to the late endosome for degradation or is recycled back to the plasma membrane via tubular structures that lack clathrin-dependent recycling cargo, e.g., transferrin. Here, we show that the small GTPase Rab22a is associated with these tubular recycling intermediates containing MHCI. Expression of a dominant negative mutant of Rab22a or small interfering RNA-mediated depletion of Rab22a inhibited both formation of the recycling tubules and MHCI recycling. By contrast, cells expressing the constitutively active mutant of Rab22a exhibited prominent recycling tubules and accumulated vesicles at the periphery, but MHCI recycling was still blocked. These results suggest that Rab22a activation is required for tubule formation and Rab22a inactivation for final fusion of recycling membranes with the surface. The trafficking of transferrin was only modestly affected by these treatments. Dominant negative mutant of Rab11a also inhibited recycling of MHCI but not the formation of recycling tubules, suggesting that Rab22a and Rab11a might coordinate different steps of MHCI recycling.


1999 ◽  
Vol 80 (8) ◽  
pp. 1965-1974 ◽  
Author(s):  
Anne Marie Szilvay ◽  
Stig-Ove Bøe ◽  
Karl-Henning Kalland

Trans-dominant negative mutants of the human immunodeficiency virus type 1 (HIV-1) regulatory protein Rev inhibit the function of wild-type Rev in a dose-dependent manner. This was previously shown to be caused by nuclear retention of the wild-type protein. In the present work, further analysis of the trans-dominant negative effect was performed using cotransfection experiments with different constructs encoding HIV-1 Rev and viral structural proteins together with a plasmid encoding a trans-dominant negative Rev mutant. Thus, one species of pre-mRNA was transcribed from the reporter plasmids. This pre-mRNA was then either spliced or exported by Rev as unspliced RNA for translation of the HIV structural proteins. An immunofluorescence assay and Western blot analysis were used for analysis of protein expression. In situ hybridization was applied for labelling of unspliced mRNA in transfected cells, and RNase protection analysis was used to determine the relative amount of unspliced versus spliced mRNAs. The experiments confirmed that the trans-dominant negative mutant inhibited nuclear export of unspliced mRNA. It was, in addition, demonstrated for the first time that the trans-dominant negative mutant also affected a Rev-dependent regulatory step connected with viral pre-mRNA splicing. As a consequence, proteins expressed from unspliced and singly spliced HIV mRNAs decreased while there was an increase in protein products encoded by spliced and alternatively spliced mRNAs.


Sign in / Sign up

Export Citation Format

Share Document