Atomic data for stellar astrophysics: from the UV to the IR1This article is part of a Special Issue on the 10th International Colloquium on Atomic Spectra and Oscillator Strengths for Astrophysical and Laboratory Plasmas.

2011 ◽  
Vol 89 (4) ◽  
pp. 345-356 ◽  
Author(s):  
Glenn M. Wahlgren

The study of stars and stellar evolution relies heavily on the analysis of stellar spectra. The need for atomic line data from the ultraviolet (UV) to the infrared (IR) regions is greater now than ever. In the past twenty years, the time since the launch of the Hubble Space Telescope, great progress has been made in acquiring atomic data for UV transitions. The optical wavelength region, now expanded by progress in detector technology, continues to provide motivation for new atomic data. In addition, investments in new instrumentation for ground-based and space observatories has lead to the availability of high-quality spectra at IR wavelengths, where the need for atomic data is most critical. In this review, examples are provided of the progress made in generating atomic data for stellar studies, with a look to the future for addressing the accuracy and completeness of atomic data for anticipated needs.

2011 ◽  
Vol 89 (4) ◽  
pp. 357-359
Author(s):  
B. Barbuy ◽  
C. Siqueira Mello ◽  
M. Spite ◽  
F. Spite ◽  
P. Bonifacio ◽  
...  

The abundance of heavy r-elements may provide a better understanding of the r-process, and the determination of several reference r-elements should allow a better determination of a star's age. The space UV region (λ < 3000 Å) presents a large number of lines of the heavy elements, and in the case of some elements, such as Bi, Pt, Au, detectable lines are not available elsewhere. The extreme “r-process star” CS 31082–001 ([Fe/H] = –2.9) was observed in the space UV to determine abundances of the heaviest stable elements, using STIS on board Hubble Space Telescope.


2011 ◽  
Vol 89 (4) ◽  
pp. 327-331 ◽  
Author(s):  
N. Grevesse ◽  
M. Asplund ◽  
A.J. Sauval ◽  
P. Scott

We have very recently re-determined the abundances of nearly all the available chemical elements in the solar photosphere, from lithium to thorium (Asplund et al. Annu. Rev. Astron. Astrophys. 47, 481 (2009)). This new complete and homogeneous analysis results from a very careful selection of spectral lines of all the indicators of the abundances present in the solar photospheric spectrum, from a discussion of the atomic and molecular data, and from an analysis of these lines based on a new 3D model of the solar outer layers, taking non-LTE effects into account when possible. We present these new results, compare them with other recent solar data as well as with recent results for the solar neighborhood, and discuss some of their most important implications as well as some of the atomic data we still urgently need.


2011 ◽  
Vol 89 (4) ◽  
pp. 379-385 ◽  
Author(s):  
N.C. Sterling ◽  
M.C. Witthoeft ◽  
D.A. Esteves ◽  
R.C. Bilodeau ◽  
A.L.D. Kilcoyne ◽  
...  

Investigations of neutron(n)-capture element nucleosynthesis and chemical evolution have largely been based on stellar spectroscopy. However, the recent detection of these elements in several planetary nebulae (PNe) indicates that nebular spectroscopy is a promising new tool for such studies. In PNe, n-capture element abundance determinations reveal details of s-process nucleosynthesis and convective mixing in evolved low-mass stars, as well as the chemical evolution of elements that cannot be detected in stellar spectra. Only one or two ions of a given trans-iron element can typically be detected in individual nebulae. Elemental abundance determinations thus require corrections for the abundances of unobserved ions. Such corrections rely on the availability of atomic data for processes that control the ionization equilibrium of nebulae (e.g., photoionization cross sections and rate coefficients for various recombination processes). Until recently, these data were unknown for virtually all n-capture element ions. For the first six ions of Se, Kr, and Xe — the three most widely detected n-capture elements in PNe — we are calculating photoionization cross sections and radiative and dielectronic recombination rate coefficients using the multi-configuration Breit–Pauli atomic structure code AUTOSTRUCTURE. Charge transfer rate coefficients are being determined with a multichannel Landau–Zener code. To calibrate these calculations, we have measured absolute photoionization cross sections of Se and Xe ions at the Advanced Light Source synchrotron radiation facility. These atomic data can be incorporated into photoionization codes, which we will use to derive ionization corrections (hence abundances) for Se, Kr, and Xe in ionized nebulae. Using Monte Carlo simulations, we will investigate the effects of atomic data uncertainties on the derived abundances, illuminating the systems and atomic processes that require further analysis. These results are critical for honing nebular spectroscopy into a more effective tool for investigating the production and chemical evolution of trans-iron elements in the Universe.


2011 ◽  
Vol 89 (4) ◽  
pp. 429-437 ◽  
Author(s):  
W.R. Johnson

We give a brief outline of the theory of hyperfine quenching followed by a review of the progress that has been made in both theory and experiment since the pioneering work of Garstang (J. Opt. Soc. Am. 52, 845 (1962)).


2019 ◽  
Vol 15 (S350) ◽  
pp. 386-387
Author(s):  
M. Laverick ◽  
A. Lobel ◽  
P. Royer ◽  
T. Merle ◽  
C. Martayan ◽  
...  

AbstractThe Belgian Repository of fundamental Atomic data and Stellar Spectra (BRASS) aims to provide one of the largest systematic and homogeneous quality assessment to date of literature atomic data required for stellar spectroscopy. By comparing state-of-the-art synthetic spectrum calculations with extremely high-quality observed benchmark spectra, we have critically evaluated fundamental atomic data, such as line wavelengths and oscillator strengths, for thousands of astrophysically-relevant transitions found in the literature and across several major atomic data repositories. These proceedings provide a short overview of the BRASS project to date, highlighting our recent efforts to investigate and quality-assess the atomic literature data pertaining to over a thousand atomic transitions present in FGK-type stellar spectra. BRASS provides all quality assessed data, theoretical spectra, and observed spectra in a new interactive database under development at brass.sdf.org.


2011 ◽  
Vol 89 (5) ◽  
pp. 591-597 ◽  
Author(s):  
Y.A. Podpaly ◽  
J.E. Rice ◽  
P. Beiersdorfer ◽  
M.L. Reinke ◽  
J. Clementson ◽  
...  

Tungsten will be an important element in nearly all future fusion reactors because of its presence in plasma facing components. This makes tungsten a good candidate for a diagnostic element for ion temperature and toroidal velocity measurement, and it makes understanding tungsten emissions important for tokamak power balance. The effect of tungsten on tokamak plasmas is investigated at the Alcator C-Mod tokamak using VUV, bolometry, and soft X-ray spectroscopy. Tungsten was present in Alcator C-Mod as a plasma facing component and through laser blow-off impurity injection. Quasi-continuum emission previously seen at other tokamaks has been identified. Theoretical predictions are presented of tungsten emission that could be expected in future Alcator C-Mod measurements. Furthermore, spectra of highly charged tungsten ions have been studied at the SuperEBIT electron beam ion trap. This emission could prove useful for spectroscopic diagnostics of future high-temperature fusion reactor plasmas.


2011 ◽  
Vol 89 (5) ◽  
pp. 495-501 ◽  
Author(s):  
T. Shikama ◽  
K. Fujii ◽  
S. Kado ◽  
H. Zushi ◽  
M. Sakamoto ◽  
...  

In spectroscopic measurements of magnetically confined torus plasmas, the line-integrated emission along a viewing chord is usually observed. However, by utilizing the dependence of the magnitude of the Zeeman splitting on the emission location, a few localized emissions existing along the viewing chord can be separated. A detailed analysis of the Zeeman split spectral lineshapes then makes it possible to evaluate the local values of the magnetic field strength, population density, temperature, and flow velocity. We have introduced polarization spectroscopy to improve the accuracy in separating the overlapped spectra. The polarization resolved Hα, He I, and H2 Fulcher-α band spectra are measured in the TRIAM-1M tokamak, and the atomic and molecular dynamics are investigated. Further progress in the simultaneous measurements of the Balmer series and Fulcher-α band spectra in LHD, and extension to the CH Gerö band spectra, are briefly presented.


2011 ◽  
Vol 89 (4) ◽  
pp. 403-412 ◽  
Author(s):  
Elmar Träbert ◽  
Yasuyuki Ishikawa ◽  
Juan A. Santana ◽  
Giulio Del Zanna

The structure of Si-like ions is discussed for the example of iron (spectrum Fe XIII). The 3s23p3d 3Fo term with its three fine structure levels of very different lifetimes has eluded the early observations. Meanwhile, complementary experimental techniques have permitted to track these levels. Theory has also evolved from approximate techniques to accurate ab initio calculations, the results of which cast doubt on some earlier Fe XIII line identifications and guide the search for and the identification of the correct lines in solar corona spectra.


2011 ◽  
Vol 89 (4) ◽  
pp. 451-456 ◽  
Author(s):  
Jean-François Wyart

Theoretical studies of electronic configurations of several lanthanide ions in the Racah–Slater approach were performed with the standard suite of codes by R.D. Cowan, including a fitting of energy parameters. Configuration interaction was considered explicitly in the low configurations and was processed by effective parameters for doubly-excited far configurations. Mean errors lower than 100 cm–1 were obtained. Systematic differences are noticed between radial integrals calculated by ab initio PHFR and the Pfit fitted values. The consistency of the scaling factors SF(P) = Pfit/PHFR and of the effective parameters for far configuration effects is shown. In an application to Tm II, the predicted transition probabilities compared well with line intensities and led to the finding of new energy levels. In Nd II, the configuration 4f5 is identified.


Sign in / Sign up

Export Citation Format

Share Document